Front Matter: Volume 9754
Contents

[Contents](#) vii Authors
ix Conference Committee
xi Introduction

APPLICATIONS OF PHOTONIC INSTRUMENTS I

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9754 03</td>
<td>A fast high-precision six-degree-of-freedom relative position sensor [9754-2]</td>
</tr>
<tr>
<td>9754 04</td>
<td>Low-cost facile interferometer for displacement mapping of harmonically excited MEMS [9754-3]</td>
</tr>
<tr>
<td>9754 05</td>
<td>Extraction of natural weight shift and foot rolling in gait based on hetero-core optical fiber load sensor [9754-4]</td>
</tr>
</tbody>
</table>

APPLICATIONS OF PHOTONIC INSTRUMENTS II

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9754 07</td>
<td>Spatially resolved spectroscopy using swept-source optical interferometry [9754-6]</td>
</tr>
<tr>
<td>9754 08</td>
<td>Mini and micro spectrometers pave the way to on-field advanced analytics [9754-7]</td>
</tr>
<tr>
<td>9754 09</td>
<td>From advanced driver assistance to autonomous driving: perspectives for photonics sensors [9754-8]</td>
</tr>
</tbody>
</table>

PHOTONIC INSTRUMENTATION DESIGN, DEVELOPMENT, AND FABRICATION I

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9754 0A</td>
<td>Design and optimization of indoor optical wireless positioning systems [9754-9]</td>
</tr>
<tr>
<td>9754 0B</td>
<td>Smart slit assembly for high-resolution spectrometers in space [9754-10]</td>
</tr>
<tr>
<td>9754 0C</td>
<td>Linear rotary optical delay lines [9754-11]</td>
</tr>
<tr>
<td>9754 0D</td>
<td>Coated fiber tips for optical instrumentation [9754-12]</td>
</tr>
<tr>
<td>9754 0E</td>
<td>Fast and accurate read-out of interferometric optical fiber sensors [9754-13]</td>
</tr>
</tbody>
</table>

PHOTONIC INSTRUMENTATION DESIGN, DEVELOPMENT, AND FABRICATION II

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9754 0F</td>
<td>Optical fiber oxygen sensor using layer-by-layer stacked porous composite membranes [9754-14]</td>
</tr>
</tbody>
</table>
Characterizing opto-electret based paper speakers by using a real-time projection Moiré metrology system [9754-15]

Measurement of surface topographies in the nm-range for power chip technologies by a modified low-coherence interferometer [9754-16]

Innovative fiber-laser architecture-based compact wind lidar [9754-18]

A device based on the Shack-Hartmann wave front sensor for testing wide aperture optics [9754-19]

LIGHT SOURCES IN PHOTONIC INSTRUMENTATION I

Propagation characteristics and characterization challenges of complex laser field distributions [9754-21]

Optical dispersion spectroscopy using optical frequency comb applied to dual-heterodyne mixing [9754-22]

Stabilization of two frequency combs with a small relative f_{ceo} jitter using diode laser injection locking [9754-23]

SENSORS AND RUGGEDIZED SYSTEMS I

Frequency-domain single-shot optical frequency comb tomography using VIPA [9754-28]

Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing [9754-30]

Silicon plasmonic-integrated sensor [9754-31]

SENSORS AND RUGGEDIZED SYSTEMS II

A hemispheric hetero-core fiber optic tactile sensor for texture and hardness detection [9754-32]

Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology [9754-35]

A system for full Stokes vector measurement for low concentration glucose sensing [9754-36]

POSTER SESSION

High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings [9754-38]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9754 15</td>
<td>Long-term measurements of SPR hydrogen sensor based on hetero-core optical fiber with Au/Ta$_2$O$_5$/Pd/Au multilayers</td>
<td>[9754-40]</td>
</tr>
<tr>
<td>9754 16</td>
<td>Temperature-stable LED-based light source without temperature control</td>
<td>[9754-41]</td>
</tr>
<tr>
<td>9754 17</td>
<td>SFFT based phase demodulation for faster interference fringes analysis</td>
<td>[9754-42]</td>
</tr>
<tr>
<td>9754 19</td>
<td>A pseudo optical frequency comb interferometry by an optical resonator and a high-speed swept-source for 2D single-shot tomography and profilometry</td>
<td>[9754-44]</td>
</tr>
<tr>
<td>9754 1A</td>
<td>Fiber Bragg grating based tunable sensitivity goniometer</td>
<td>[9754-45]</td>
</tr>
<tr>
<td>9754 1B</td>
<td>Development of SPR temperature sensor using Au/TiO$_2$ on hetero-core optical fiber</td>
<td>[9754-46]</td>
</tr>
<tr>
<td>9754 1C</td>
<td>Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method</td>
<td>[9754-47]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Asokan, Sundarrajan, 1A
Aßmann, H., 0H
Ayoub, Ahmad B., 0W
Bačić, Dubravko, 10, 16
Ban, Sayuri, 0F
Banh, Q. T., 19
Bartholsen, Ingebrigt, 0E
Barton, John B., 0D
Baselt, T., 0H
Bergen, Mark H., 0A
Borsoni, Gilles, 0K
Bosiljevac, Marko, 10, 16
Bouyé, Clémentine, 08, 09
Brashears, Travis, 03
Burchat, Ryan, 13
Carver, Gary E., 0D
Chanda, Sheetal, 0D
Chang, Ya-Ling, 0G
Chaves, Hugo A. L. F., 0A
Cheng, Baokai, 0V
Chun, Byung Jae, 0O
Cochard, Jacques, 09
Coulas, David, 13
Denisenko, Dmitri, 0K
d’Humières, Benoît, 08
Ding, HuiMin, 13
Duchesne, Marc A., 13
Gan, Qiaoqiang, 0W
Greiner, A., 0H
Grivas, Janelle, 03
Grobnic, Dan, 13
Guerrero, Daniel, 0A
Guldmann, Benedikt, 0B
Hartmann, P., 0H
Higgins, Richard, 0J
Hjelme, Dag Roar, 0E
Holzman, Jonathan F., 0A
Hosaki, Ai, 0F, 15, 1B
Hristovski, Blago A., 0A
Hsu, Kuan-Yu, 0G, 17
Hua, Liwei, 0V
Hung, Jie, 0V
Hughes, Gary B., 03
Hughes, Robin W., 13
Igawa, Hirofumi, 15
Igrec, Bojan, 10
Jin, Xian, 0A
Karasik, Valerii, 0K
Kasuga, Kaishu, 0N
Kim, Seung-Woo, 0O
Kim, Young-Jin, 0O
Kitagawa, Sho, 1B
Klukas, Richard, 0A
Koch, E., 0H
Kolb, Hugo, 08
Koyama, Yuya, 0S
Kudryashov, Alexis, 0K
Lee, Chen-Kuo, 17
Lee, Chih-Kung, 0G, 17
Lo, Yu-Lung, 11
Locknar, Sarah A., 0D
Lu, Ping, 13
Lubin, Philip, 03
Macasaet, Van P., 03
Madajan, Jonathan, 03
Maidzik, Mateusz, 04
McCaIden, David J., 13
Meinhold, Peter, 03
Mihaliov, Stephen J., 13
Minoglu, Kyriakos, 0B
Miya, Takayuki, 0N
Miyaoaka, Takumi, 0T
Nelsen, B., 0H
Nikitin, Alexander, 0K
Nishiyama, Michiko, 05, 0F, 0X, 15, 1B
Nonaka, Kazuhiro, 1C
Onita, Ryoma, 07
Otsuka, Yudai, 0S
Padma, Srivani, 1A
Pant, Shweta, 1A
Phan, Quoc-Hung, 11
Prasad, Narasimha S., 0J
Qu, Hang, 0C
Rudan, Smljko, 10
Sakai, KazuFumi, 1C
Sakata, Yoshitaro, 1C
Sakharov, Alexey, 0K
Seki, Atsushi, 0F
SheoSakova, Julia, 0K
Shioda, Tatsutoshi, 07, 0N, 0T, 19
Sibell, Russ, 0J
Sipus, Zvonimir, 10, 16
Sison, Claudia A., 03
Skorobogatyi, Maksim, 0C
Song, Yang, 0V
Soskind, Y. G., 0M
Srinivas, Talabattula, 1A
Conference Committee

Symposium Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs

David L. Andrews, University of East Anglia (United Kingdom)
Alexei L. Glebov, OptiGrate Corporation (United States)

Program Track Chair

Yakov Sidorin, Quarles & Brady LLP (United States)

Conference Chairs

Yakov G. Soskind, DHPC Technologies (United States)
Craig Olson, L-3 Communications (United States)

Conference Program Committee

James B. Breckinridge, California Institute of Technology (United States)
Lynda E. Busse, U.S. Naval Research Laboratory (United States)
James T. A. Carriere, Ondax, Inc. (United States)
John D. Corless, Verity Instruments, Inc. (United States)
David G. Fischer, NASA Glenn Research Center (United States)
Filipp V. Ignatovich, Lumetrics, Inc. (United States)
Jacob B. Khurgin, Johns Hopkins University (United States)
Antti Johannes Makinen, U.S. Naval Research Laboratory (United States)
Patrick C. Mock, Ziva Corporation (United States)
Nada A. O'Brien, Viavi Solutions Inc. (United States)
Daniel J. Reiley, California Institute of Technology (United States)
Jeff Throckmorton, Avo Photonics, Inc. (United States)
Alain Villeneuve, Genia Photonics Inc. (Canada)
Session Chairs

1. Applications of Photonic Instruments I
 Yakov G. Soskind, DHPC Technologies (United States)

2. Applications of Photonic Instruments II
 Yakov G. Soskind, DHPC Technologies (United States)

3. Photonic Instrumentation Design, Development, and Fabrication I
 James T. A. Carriere, Ondax, Inc. (United States)

4. Photonic Instrumentation Design, Development, and Fabrication II
 Nada A. O’Brien, Viavi Solutions Inc. (United States)

5. Light Sources in Photonic Instrumentation I
 Jeff Throckmorton, Avo Photonics, Inc. (United States)

6. Light Sources in Photonic Instrumentation II
 Lynda E. Busse, U.S. Naval Research Laboratory (United States)

7. Sensors and Ruggedized Systems I
 Jeff Throckmorton, Avo Photonics, Inc. (United States)

8. Sensors and Ruggedized Systems II
 Yakov G. Soskind, DHPC Technologies (United States)
Introduction

Building on the success of the last two years, the Photonic Instrumentation Engineering Conference has continued to expand, seeing a 40% increase in the total number of submitted papers. This year, the conference had a truly international spirit, with presentations from the United States, Canada, Japan, India, Taiwan, South Korea, Singapore, the United Arab Emirates, Croatia, France, Germany, the Netherlands, and Norway.

This volume features several important contributions to the science of photonic instrumentation development and applications. A broad spectrum of different technologies and applications was presented, including various sensor technologies, laser and LED sources, and interferometric and spectroscopic instruments.

The presented sensor technologies perform numerous functions and work on different principles, including polarization sensing, positioning sensors, sensors based on surface plasmon resonance, interferometric and fiber-optic sensors, and sensors employed in the automotive industry.

A broad array of various photonic sources was presented this year. Some examples include femtosecond lasers, LEDs, lasers with complex field distributions, and high-speed spectrally swept sources.

Advancements made in the field of photonic instrumentation have been manifested this year by several practical applications of complex photonic devices that just a few years ago were considered exotic. This year, we witnessed the practical use of several spectroscopic instruments based on optical frequency combs, and interferometric devices using spectrally swept lasers and low coherence interferometers, just to name a few.

We are looking forward to your participation in the upcoming SPIE conferences, and hope to see the strong continuing interest in the field of photonics instrumentation development and applications from you, the reader.

Yakov G. Soskind
Craig Olson