Solid State Lasers XXVII: Technology and Devices

W. Andrew Clarkson
Ramesh K. Shori

Editors

29 January – 1 February 2018
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10511
Contents

EYE SAFE AND MID-IR LASERS I

10511 02 Efficient 2-μm Tm:YAP Q-switched and CW lasers [10511-1]
10511 06 Simulation of energy buildsups in solid-state regenerative amplifiers for 2-μm emitting lasers [10511-5]
10511 07 2.097 μC Th:YAG flashlamp pumped high energy high efficiency laser operation (patent pending) [10511-6]

EYE SAFE AND MID-IR LASERS II

10511 09 Ultrashort pulse CPA-free Ho:YLF linear amplifier [10511-8]
10511 0A Passive Q-switching of femtosecond-laser-written Tm:KLu(WO₄)₂ waveguide lasers by graphene and MoS₂ saturable absorbers [10511-9]
10511 0B Tm:GdVO₄ microchip laser Q-switched by a SbzTestoplogical insulator [10511-10]
10511 0E Advanced laser architectures for high power eyesafe illuminators [10511-12]

EYE SAFE AND MID-IR LASERS III

10511 0G Fiber-coupled three-micron pulsed laser source for CFRP laser treatment [10511-14]
10511 0H High efficiency compact mid-IR sources [10511-15]
10511 0I Re-absorption and nonradiative energy transfer in vibronic laser gain media [10511-16]
10511 0J High-energy diode side-pumped Er:YLF laser generating 100 mJ @ 100 Hz [10511-17]

DISK LASERS

10511 0K kW picosecond thin-disk regenerative amplifier [10511-18]
10511 0L New generation of compact high power disk lasers [10511-19]
Generation of 1-J bursts with picosecond pulses from Perla B thin-disk laser system [10511-21]

PULSED LASERS I

10511 OP Power balance on a multibeam laser [10511-23]
10511 OR Sub-nanosecond lasers for cosmetics and dermatology [10511-25]
10511 OT 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier (Invited Paper) [10511-27]

PULSED LASERS III

10511 OX Characterization of Bivoj/DiPOLE 100: HiLASE 100-J/10-Hz diode pumped solid state laser [10511-33]
10511 OY A developmental perspective on high power laser facility technology for ICF [10511-34]
10511 OZ 2-μm Cr2+: CdSe passively Q-switched laser [10511-35]

UV-VIS LASERS

10511 12 Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser [10511-38]
10511 13 Control of pulse duration and shape in a 400-W Q-switched 532-nm laser [10511-39]

ULTRAFAST LASERS

10511 17 Low repetition rate operation of a femtosecond Yb:CALGO laser [10511-43]
10511 18 InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser [10511-44]
10511 1B High power green lasers for gamma source [10511-47]
10511 1C Sub-100-attosecond residual timing jitter from turn-key diode-pumped solid state mode-locked ytterbium lasers [10511-48]

AIRBORNE AND SPACE QUALIFIED LASERS

10511 1D Laser system development for gravitational-wave interferometry in space [10511-49]
10511 1E Progress on laser technology for proposed space-based sodium lidar [10511-50]
NOVEL LASER CONCEPTS

10511 1H Progress on Raman laser for sodium resonance fluorescence lidar [10511-53]
10511 1J LED-pumped Alexandrite laser oscillator and amplifier [10511-55]
10511 1K High-power single-pass pumped diamond Raman oscillator [10511-56]
10511 1M Cylindrical vector beams through amplifiers [10511-58]
10511 1N How to harvest efficient laser from solar light [10511-59]

LASER MATERIAL AND CHARACTERIZATION

10511 1O Optical spectroscopy of cobalt-doped cadmium telluride [10511-60]
10511 1P Growth of rare-earth doped single crystal yttrium aluminum garnet fibers [10511-61]
10511 1Q Laser performance and modeling of RE³⁺:YAG double-clad crystalline fiber waveguides [10511-62]
10511 1R Grain growth and significant Fe diffusion in polycrystalline ZnS at elevated temperatures and pressures [10511-63]
10511 1S Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping [10511-64]
10511 1U Thermo-optical properties of Alexandrite laser crystal [10511-75]

POSTER SESSION

10511 1V Dual-wavelength Nd:CaLnAlO₄ lasers at 1.365 and 1.390 μm [10511-28]
10511 1X Dual-wavelength operation of a continuous-wave Alexandrite laser [10511-67]
10511 1Y Passively mode-locked Nd:YVO₄ laser operating at 1073 nm and 1085 nm [10511-68]
10511 1Z Dual-wavelength Yb:CALGO laser with 1.31 THz frequency offset [10511-69]
10511 20 Error tolerance analysis of wave diagnostic based on coherent modulation imaging in high power laser system [10511-70]
10511 21 Temperature influence on spectroscopic properties and 2.7-μm lasing of Er:YAP crystal [10511-71]
10511 22 Temperature influence on spectroscopic and lasing properties of blue laser diode pumped Alexandrite crystal [10511-72]
10511 24 Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal [10511-74]
Spectroscopy and lasing of Tm: SrMoO$_4$ crystal near 1.5, 1.9, and 2.3-μm under 793-nm excitation [10511-76]

Optimized Ce:LiCAF amplifier pumping configurations [10511-77]

Fe:Zn$_{0.6}$Mn$_{0.4}$Se laser generation at 5.0 – 5.8 μm in the temperature range of 78 – 300 K [10511-79]

Efficient Ti:LiNbO$_3$ ridge waveguide lasers: Investigation of Er and Yb:Er doped waveguides pumped at 980nm and 1486nm [10511-81]

Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications [10511-83]

Laser spectroscopy of highly doped NV centers in diamond [10511-84]

High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis [10511-85]

Enhancement of thermal blooming effect on free space propagation of high power CW laser beam [10511-86]

High-frequency strontium vapor laser for biomedical applications [10511-88]

GHz Yb:KYW oscillators in time-resolved spectroscopy [10511-89]

Excitation of higher lying energy states in a rubidium DPAL [10511-92]

Excited argon 1s$_5$ production in micro-hollow cathode discharges for use as potential rare gas laser sources [10511-93]

Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design [10511-94]

CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source [10511-96]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aguiló, Magdalena, 0A, 0B, 1V
Alexaïne, Olivier, 1B
Alexeev, Ilya, 06
Allan, Graham R., 1E
Aubourg, Adrien, 1B
Bai, Yingan, 1E, 1H
Balémbois, François, 1J
Banerjee, Saumya Brata, 0T, 0X
Baranova, N., 0E
Bar-Joseph, Dan, 07
Barty, Michael, 13
Bai, Yingxin, 1E, 1H
Bailembois, François, 1J
Bessing, Robert, 0K
Blanchot, Jean-Philippe, 1J
Bliss, David, 0G
Bobostawski, Jakub, 0B
Büskö, Dominik, 2A
Budnicki, Aleksander, 0K
Butcher, Thomas J., 0T, 0X
Bykovskaya, E., 2H
Bystrický, I., 0E
Cadataal-Raduban, Marilou, 26
Camp, Jordan B., 1D
Casanoova, Alexis, 1B, 1C
Čech, Miroslav, 21, 22, 24
Chard, Simon, 13
Čech, Miroslav, 0T
Chen, C.T., 2C
Chen, Jeffrey R., 1E
Chen, Yanxue, 0A
Chen, Ying, 13
Cheng, Long, 1P
Chinn, Steve, 0H, 12
Chu, Hong, 0R
Chylja, Michal, 0N
Cole, Brian, 02, 0H, 12
Collier, John L., 0T, 0X
Cook, Gary, 0I
Courjaud, Antoine, 1B, 1C
De Villota, Maria Stefanía, 0T, 0X
Dean, R., 0P
Dekorsy, Thomas, 2I
DePrest, C., 0E
Diaz, Francesc, 0A, 0B, 1V
Divoky, Martin, 0T, 0X
Donaldson, W. R., 0P
Doroshenko, Maxim E., 25, 28
Druon, Frédéric, 1J
Dunaeva, Elizabeth E., 25
Duran, Magall, 1B
Eberhard, Ramona, 1K
Ebner, Lukas, 2I
Edwards, Chris, 0T, 0X
Endo, Akira, 0N
Empíz, Melvin John F., 26
Ertel, Klaus, 0T, 0X
Eshel, Ben, 2K
Evans, Jonathan W., 0I, 1O
Ezzo, K., 0E
Farhey, Molly E., 1E, 1H
Fan, Quanfang, 0Y
Fan, Yuanrui, 2L
Fedorov, Vladimir V., 1R, 2D
Fedorova, Ksenia A., 18
Feng, Tao, 0Y
Feuchtenberger, Stéphanie, 0L
Fribich, Martin, 22
Forbes, Andrew, 1M
Fukuda, Tsuguo, 26
Gabayno, Jaqueline Lynn, 26
Gafarov, Ozarfar, 1R
Gardner, Chester S., 1E
Georges, Patrick, 1J
Ghanbari, Shirin, 18, 1U, 1X
Ghirlanda, Samy A., 2E, 2F
Gillert, C., 2C
Goldberg, Lew, 02, 0H, 12
Gothwald, Tina, 0L
Gerasimenko, A., 28
Grebling, Christian, 0K
Griebner, Uwe, 0A, 0B, 1V
Guan, Zhe, 1N
Guo, Yajing, 0Y
Hafner, Matthias, 0K
Hagen, Clemens, 0J
Halaska, Nathan D., 2M
Hanus, Martin, 0X
Harrington, James A., 1P
Harris, Thomas R., 0I, 1O
Haug, Patrick, 0L
Hays, A. D., 0Z
Heberle, Johannes, 06
Heinrich, Arne, 0J
Heinäkangas, Matthias, 1K
Hernandez-Gomez, Cristina, 0T, 0X
Herzig, Tobias, 0K
Hettich, Mike, 2I
Conference Committee

Symposium Chairs

Koji Sugioka, RIKEN (Japan)
Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)

Symposium Co-Chairs

Xi'anfan Xu, Purdue University (United States)
Beat Neuenschwander, Berner Fachhochschule Technik und Informatik (Switzerland)

Program Track Chairs

Kunihiko Washio, Paradigm Laser Research Ltd. (Japan)
John Ballato, Clemson University (United States)

Conference Chairs

W. Andrew Clarkson, University of Southampton (United Kingdom)
Ramesh K. Shori, SPAWAR Systems Center (United States)

Conference Program Committee

Patrick A. Berry, Air Force Research Laboratory (United States)
Marc Béchhorn, Institut Franco-Allemand de Recherches de Saint-Louis (France)
Dennis G. Harris, MIT Lincoln Laboratory (United States)
Norman Hodgson, Coherent, Inc. (United States)
Helena Jelínková, Czech Technical University in Prague (Czech Republic)
Christian Kränkel, Universität Hamburg (Germany)
Jacob I. Mackenzie, University of Southampton (United Kingdom)
Markus Polinau, KTH Royal Institute of Technology (Sweden)
Narasimha S. Prasad, NASA Langley Research Center (United States)
Bojan Resan, Lumentum (Switzerland) and University of Applied Sciences and Arts Northwestern (Switzerland)
Deyuan Shen, Fudan University (China)

Session Chairs

1 Eye Safe and Mid-IR Lasers I
Ramesh K. Shori, SPAWAR Systems Center (United States)
2 Eye Safe and Mid-IR Lasers II
 Ramesh K. Shori, SPAWAR Systems Center (United States)

3 Eye Safe and Mid-IR Lasers III
 Ramesh K. Shori, SPAWAR Systems Center (United States)

4 Disk Lasers
 Dennis G. Harris, MIT Lincoln Laboratory (United States)

5 Pulsed Lasers I
 W. Andrew Clarkson, University of Southampton (United Kingdom)

6 Pulsed Lasers II
 W. Andrew Clarkson, University of Southampton (United Kingdom)

7 Pulsed Lasers III
 Gary Cook, Air Force Research Laboratory (United States)

8 UV-VIS Lasers
 Helena Jelínková, Czech Technical University in Prague
 (Czech Republic)

9 Ultrafast Lasers
 Narasimha S. Prasad, NASA Langley Research Center (United States)

10 Airborne and Space Qualified Lasers
 Narasimha S. Prasad, NASA Langley Research Center (United States)

11 Novel Laser Concepts
 Dennis G. Harris, MIT Lincoln Laboratory (United States)

12 Laser Material and Characterization
 W. Andrew Clarkson, University of Southampton (United Kingdom)