Photons Plus Ultrasound: Imaging and Sensing 2009

Alexander A. Oraevsky
Lihong V. Wang
Editors

25–28 January 2009
San Jose, California, United States

Sponsored by
SPIE

Cosponsored by
Fairway Medical Technologies, Inc. (United States)

Published by
SPIE

Volume 7177

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN 1605-7422
ISBN 9780819474230

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2009, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/09/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID number.
Contents

- xiii Conference Committee
- xv Introduction to the 10th Proceedings of Photons Plus Ultrasound: Imaging and Sensing

SESSION 1 CLINICAL APPLICATIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7177 02</td>
<td>Quantitative analysis with the optoacoustic/ultrasound system OPUS</td>
<td>C. Haisch, K. Zell, Technische Univ. München (Germany); J. Sperl, M. W. Vogel, GE Global Research (Germany); R. Niessner, Technische Univ. München (Germany)</td>
</tr>
<tr>
<td>7177 03</td>
<td>Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes</td>
<td>S. A. Ermilov, Fairway Medical Technologies, Inc. (United States); M. P. Fronheiser, Seno Medical Instruments (United States); H.-P. Brecht, R. Su, A. Conjusteau, K. Mehta, Fairway Medical Technologies, Inc. (United States); P. Otto, Cancer Therapy and Research Ctr. (United States); A. A. Oraevsky, Fairway Medical Technologies, Inc. (United States) and Seno Medical Instruments (United States)</td>
</tr>
<tr>
<td>7177 04</td>
<td>Real-time photoacoustic and ultrasonic imaging of human vasculature</td>
<td>R. G. M. Kolkman, Univ. of Twente (Netherlands); P. J. Brands, Esaote Europe B.V. (Netherlands); W. Steenbergen, Univ. of Twente (Netherlands); T. G. van Leeuwen, Univ. of Twente (Netherlands) and Univ. of Amsterdam (Netherlands)</td>
</tr>
<tr>
<td>7177 05</td>
<td>Clinical tests of highly portable 2-lb. laser diode-based noninvasive optoacoustic hemoglobin monitor</td>
<td>I. Y. Petrova, Y. Y. Petrov, D. S. Prough, R. O. Esenaliev, The Univ. of Texas Medical Branch at Galveston (United States)</td>
</tr>
<tr>
<td>7177 06</td>
<td>Clinical tests of noninvasive optoacoustic cerebral venous oxygenation monitoring system</td>
<td>Y. Y. Petrov, I. Y. Petrova, R. O. Esenaliev, D. S. Prough, The Univ. of Texas Medical Branch at Galveston (United States)</td>
</tr>
</tbody>
</table>

SESSION 2 TOWARD CLINICAL APPLICATIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7177 07</td>
<td>Photoacoustic guidance of diffusive optical tomography with a hybrid reflection geometry probe</td>
<td>J. Gamelin, Y. Ardeshirpour, A. Aguirre, B. Takavoli, Q. Zhu, Univ. of Connecticut (United States)</td>
</tr>
<tr>
<td>7177 08</td>
<td>Photoacoustic characterization of ovarian tissue</td>
<td>A. Aguirre, J. Gamelin, Univ. of Connecticut (United States); P. Guo, Electrocore LLC (United States); S. Yan, Siemens Molecular Imaging (United States); M. Sanders, M. Brewer, Q. Zhu, Univ. of Connecticut Health Ctr. (United States)</td>
</tr>
</tbody>
</table>
Reflection mode photoacoustic imaging through infant skull toward noninvasive imaging of neonatal brains [7177-08]
X. Wang, J. B. Fowlkes, D. L. Chamberland, Univ. of Michigan School of Medicine (United States); G. Xi, Univ. of Michigan (United States); P. L. Carson, Univ. of Michigan School of Medicine (United States)

Photoacoustic characterisation of vascular tissue at NIR wavelengths [7177-09]
T. J. Allen, P. C. Beard, Univ. College London (United Kingdom)

SESSION 3 PRECLINICAL IMAGING IN SMALL ANIMALS

A fast 512-element ring array photoacoustic imaging system for small animals [7177-10]
J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, Univ. of Connecticut (United States); L. V. Wang, Washington Univ. in St. Louis (United States); Q. Zhu, Univ. of Connecticut (United States)

Photoacoustic microscopy of cerebral blood-oxygenation dynamics in mice [7177-11]
K. Maslov, E. W. Stein, L. V. Wang, Washington Univ. in St. Louis (United States)

Mesoscopic imaging of fluorescent proteins using multi-spectral optoacoustic tomography (MSOT) [7177-12]
D. Razansky, Technical Univ. of Munich (Germany) and Helmholtz Ctr. Munich (Germany); C. Vinegoni, Massachusetts General Hospital (United States) and Harvard Medical School (United States); V. Ntziachristos, Technical Univ. of Munich (Germany) and Helmholtz Ctr. Munich (Germany)

Optoacoustic 3D whole-body tomography: experiments in nude mice (Best Paper Award) [7177-13]
H.-P. Brecht, R. Su, Fairway Medical Technologies, Inc. (United States); M. Fronheiser, Seno Medical Instruments, Inc. (United States); S. A. Ermilov, A. Conjusteau, Fairway Medical Technologies, Inc. (United States); A. Liopo, M. Motamedi, The Univ. of Texas Medical Branch at Galveston (United States); A. A. Oraevsky, Fairway Medical Technologies, Inc. (United States) and Seno Medical Instruments, Inc. (United States)

HYPR-spectral photoacoustic CT for preclinical imaging [7177-14]
R. Kruger, D. Reinecke, G. Kruger, OptoSonics, Inc. (United States); M. Thornton, P. Picot, T. Morgan, Endra, Inc. (United States); K. Stantz, Purdue Univ. (United States); C. Mistretta, Univ. of Wisconsin, Madison (United States)

SESSION 4 HIGH-RESOLUTION IMAGING/MICROSCOPY

Fast 3-D photoacoustic imaging in vivo with a high frequency ultrasound array toward clinical applications [7177-15]
L. Song, K. Maslov, Washington Univ. in St. Louis (United States); R. Bitton, K. K. Shung, Univ. of Southern California (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

In vivo noninvasive monitoring of microhemodynamics using optical-resolution photoacoustic microscopy [7177-16]
S. Hu, K. I. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)
In vivo imaging of microcirculation using integrated photoacoustic and optical coherence microscopy [7177-17]
L. Li, K. I. Maslov, G. Ku, L. V. Wang, Washington Univ. in St. Louis (United States)

Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer [7177-19]
X. Yang, L. V. Wang, Washington Univ. in St. Louis (United States); A. Maurudis, J. Gamelin, A. Aguirre, Q. Zhu, Univ. of Connecticut (United States)

Laser-scanning optical-resolution photoacoustic microscopy [7177-20]
H. F. Zhang, Z. Xie, Univ. of Wisconsin, Milwaukee (United States); S. Jiao, C. A. Puliafito, Univ. of Southern California (United States)

SESSION 5 NEW OPTOACOUSTIC SYSTEMS

Deep tissue optoacoustic imaging of polarized structures [7177-22]
D. Razansky, Technical Univ. of Munich (Germany) and Helmholtz Ctr. Munich (Germany); C. Vinegoni, Massachusetts General Hospital (United States) and Harvard Medical School (United States); V. Ntziachristos, Technical Univ. of Munich (Germany) and Helmholtz Ctr. Munich (Germany)

Endoscopic photoacoustic microscopy [7177-23]
J.-M. Yang, K. Maslov, Washington Univ. in St. Louis (United States); H.-C. Yang, Q. Zhou, Univ. of Southern California (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

Novel optoacoustic array for noninvasive monitoring of blood parameters [7177-24]
V. G. Andreev, Lomonosov Moscow State Univ. (Russian Federation) and Univ. of Texas Medical Branch at Galveston (United States); Y. Y. Petrov, D. S. Prough, I. Y. Petrova, R. O. Esenaliev, Univ. of Texas Medical Branch at Galveston (United States)

A photoacoustic method for optical scattering measurements in turbid media [7177-26]
R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, K. Mathewson, Univ. of Alberta (Canada)

SESSION 6 NEW TRANSDUCERS AND ARRAYS

High-NA-based virtual point detectors for photoacoustic imaging [7177-27]
C. Li, L. V. Wang, Washington Univ. in St. Louis (United States)

Photoacoustic imaging with limited diffraction beam transducers [7177-28]
G. Paltauf, S. Gratt, K. Passler, R. Nuster, Karl-Franzens-Univ. Graz (Austria); P. Burgholzer, Upper Austrian Research (Austria)

Comparison of optical and piezoelectric integrating line detectors [7177-29]
R. Nuster, S. Gratt, K. Passler, Karl-Franzens-Univ. Graz (Austria); H. Grün, Th. Berer, P. Burgholzer, Upper Austrian Research GmbH (Austria); G. Paltauf, Karl-Franzens-Univ. Graz (Austria)
Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response [7177-30]
A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, Fairway Medical Technologies, Inc. (United States); M. P. Fronheiser, Seno Medical Instruments (United States); A. A. Oraevsky, Fairway Medical Technologies, Inc. (United States)

SESSION 7 IMPROVING AND TESTING SYSTEM PARAMETERS

High sensitivity intravascular photoacoustic imaging of macrophages [7177-31]
B. Wang, E. Yantsen, The Univ. of Texas at Austin (United States); K. Sokolov, The Univ. of Texas at Austin (United States) and The Univ. of Texas M.D. Anderson Cancer Ctr. (United States); S. Emelianov, The Univ. of Texas at Austin (United States)

3D photoacoustic imaging of a moving target [7177-32]
P. Ephrat, M. Roumeliotis, F. S. Prato, J. J. L. Carson, Lawson Health Research Institute (Canada) and Univ. of Western Ontario (Canada)

Optoacoustic imaging: application to the detection of foreign bodies [7177-33]
L. Page, S. Maswadi, R. D. Glickman, The Univ. of Texas Health Science Ctr. at San Antonio (United States); N. Barsalou, Naval Health Research Ctr. Detachment (United States); R. Branstetter, S. Thompson, Seno Medical Instruments, Inc. (United States)

Simultaneous recovery of chromophore concentrations and ultrasound velocity by spectrally resolved photoacoustic tomography [7177-34]
Z. Yuan, Q. Zhang, S. Grobmyer, H. Jiang, Univ. of Florida (United States)

Reduction of background in optoacoustic image sequences obtained under tissue deformation [7177-35]
M. Jaeger, L. Siegenthaler, M. Kitz, M. Frenz, Univ. Bern (Switzerland)

SESSION 8 COMBINED ULTRASOUND AND OPTOACOUSTICS

Development of a fast-scanning combined ultrasound-photoacoustic biomicroscope [7177-38]
R. J. Zemp, H. Lu, K. Mathewson, J. Ranasinghesagara, Y. Jiang, A. Walsh, X. Chen, Univ. of Alberta (Canada)

Design, fabrication, and testing of a dual-band photoacoustic transducer [7177-39]
J.-H. Liu, C.-W. Wei, Y. Sheu, Y.-T. Tasi, Y.H. Wang, P.-C. Li, National Taiwan Univ. (Taiwan)

SESSION 9 QUANTITATIVE OPTOACOUSTIC IMAGING AND MODELING

The challenges for quantitative photoacoustic imaging (Invited Paper) [7177-40]
B. T. Cox, J. G. Laufer, P. C. Beard, Univ. College London (United Kingdom)

Quantitative measurement of tissue optical absorption spectrum in a scattering medium by photoacoustic technique [7177-42]
J. R. Rajian, P. L. Carson, X. Wang, Univ. of Michigan School of Medicine (United States)
Fast tissue-realistic models of photoacoustic wave propagation for homogeneous attenuating media [7177-43]
B. E. Treeby, B. T. Cox, Univ. College London (United Kingdom)

Monte Carlo simulation of light transport in dark-field confocal photoacoustic microscopy [7177-44]
Z. Xie, Univ. of Wisconsin, Milwaukee (United States); L. V. Wang, Washington Univ. in St. Louis (United States); H. F. Zhang, Univ. of Wisconsin, Milwaukee (United States)

Discriminating between absorption and scattering coefficients in optical characterisation measurements on gold nanoparticle based photoacoustic contrast agents [7177-45]
C. Ungureanu, Univ. Twente (Netherlands); A. Amelink, H. J. C. M. Sterenborg, Erasmus Medical Ctr. (Netherlands); S. Manohar, T. G. van Leeuwen, Univ. Twente (Netherlands)

SESSION 10 SIGNAL PROCESSING AND IMAGE RECONSTRUCTION

Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation [7177-47]
D. Modgil, The Univ. of Chicago (United States); M. A. Anastasio, K. Wang, Illinois Institute of Technology (United States); P. J. La Rivière, The Univ. of Chicago (United States)

Photoacoustic image reconstruction in an attenuating medium using singular value decomposition [7177-48]
D. Modgil, The Univ. of Chicago (United States); M. A. Anastasio, Illinois Institute of Technology (United States); P. J. La Rivière, The Univ. of Chicago (United States)

Improvements in time resolution of tomographic photoacoustic imaging using a priori information for multiplexed systems [7177-49]
J. Gamelin, A. Aguirre, A. Maurudis, Univ. of Connecticut (United States); L. V. Wang, Washington Univ. in St. Louis (United States); Q. Zhu, Univ. of Connecticut (United States)

SESSION 11 ULTRASOUND MODULATED (ACOUSTO-OPTICAL) IMAGING I

Ultrasound-modulated optical imaging using a photorefractive interferometer and a powerful long pulse laser [7177-50]
G. Rousseau, A. Blouin, J.-P. Monchalin, National Research Council Canada (Canada)

Ultrasound-modulated optical imaging using a confocal Fabry-Perot interferometer and a powerful long pulse laser [7177-51]
G. Rousseau, A. Blouin, J.-P. Monchalin, National Research Council Canada (Canada)

Ring-shaped light illumination ultrasound-modulated optical tomography and its application for sentinel lymph node mapping ex vivo [7177-52]
C. Kim, K. H. Song, K. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

Sensing the optical properties of diffusive media by acousto-optic pressure contrast imaging [7177-53]
P. Lai, R. A. Roy, T. W. Murray, Boston Univ. (United States)
SESSION 12 ULTRASOUND MODULATED (ACOUSTO-OPTICAL) IMAGING II

7177 1H Three-dimensional acousto-optic mapping using planar scanning with ultrasound bursts
 [7177-54]
 A. Bratchenia, R. Molenaar, R. P. H. Kooyman, Univ. of Twente (Netherlands)

7177 1J Ultrasound-modulated fluorescence based on a fluorophore-quencher labeled
 microbubble system [7177-56]
 B. Yuan, The Catholic Univ. of America (United States)

7177 1L Detection of ultrasound-modulated photons and enhancement with ultrasound
 microbubbles [7177-58]
 D. J. Hall, M. J. Hsu, S. Esener, R. F. Mattrey, Univ. of California, San Diego (United States)

SESSION 13 MOLECULAR IMAGING AND SENSING USING NANOPARTICLES

7177 1M Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage
 contrast agents (Invited Paper) [7177-59]
 K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpivouk, L. Brannon-Preppas, S. Emelianov,
 The Univ. of Texas at Austin (United States)

7177 1N In vivo photoacoustic (PA) mapping of sentinel lymph nodes (SLNs) using carbon nanotubes
 (CNTs) as a contrast agent [7177-60]
 M. Pramanik, K. H. Song, Washington Univ. in St. Louis (United States); M. Swierczewska,
 D. Green, B. Sitharaman, SUNY at Stony Brook Univ. (United States); L. V. Wang, Washington
 Univ. in St. Louis (United States)

7177 1P Detection of gold-nanorod targeted pathogens using optical and piezoelectric
 optoacoustic sensors: comparative study [7177-62]
 A. Conjusteau, Fairway Medical Technologies, Inc. (United States); S. Maswadi, The Univ. of
 Texas Health Science Ctr. at San Antonio (United States); S. Ermilov, H.-P. Brecht, Fairway
 Medical Technologies, Inc. (United States); N. Barsalou, Naval Health Research Ctr.
 Detachment (United States); R. D. Glickman, The Univ. of Texas Health Science Ctr. at San
 Antonio (United States); A. A. Oraevsky, Fairway Medical Technologies, Inc. (United States)

7177 1Q Optoacoustic detection of viral antigens using targeted gold nanorods [7177-63]
 S. Maswadi, L. Woodward, R. D. Glickman, The Univ. of Texas Health Science Ctr. at San
 Antonio (United States); N. Barsalou, Naval Health Research Ctr. Detachment (United States)

7177 1R Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac
 applications [7177-64]
 R. Olafsson, L. Montilla, P. Ingram, R. S. Witte, The Univ. of Arizona (United States)

SESSION 14 MONITORING THERMAL LESIONS

7177 1S Photoacoustic temperature measurements for monitoring of thermal therapy [7177-65]
 S.-H. Wang, National Taiwan Univ. (Taiwan) and National Taiwan Univ. Hospital (Taiwan);
 C.-W. Wei, National Taiwan Univ. (Taiwan); S.-H. Jee, National Taiwan Univ. Hospital (Taiwan);
 P.-C. Li, National Taiwan Univ. (Taiwan)
Phantoms for thermoacoustic tomography with RF heating [7177-66]
A. Eckhart, M. Schrauth, M. Rhodes, J. Becker, S. K. Patch, Univ. of Wisconsin, Milwaukee (United States)

RF testbed for thermoacoustic tomography [7177-67]
D. Fallon, Electronics Research Inc. (United States); L. Yan, Sichuan Univ. (China); G. W. Hanson, S. K. Patch, Univ. of Wisconsin, Milwaukee (United States)

Optoacoustic detection of thermal lesions [7177-68]
M. G. Arsenault, Univ. of Prince Edward Island (Canada); M. C. Kolios, Ryerson Univ. (Canada); W. M. Whelan, Univ. of Prince Edward Island (Canada) and Atlantic Veterinary College (Canada)

SESSION 15 IMAGING WITH OPTICAL DETECTORS

Assessment of opto-mechanical behavior of biological samples by interferometry [7177-70]
B. Sorushian, Ryerson Univ. (Canada); W. M. Whelan, Univ. of Prince Edward Island (Canada); M. C. Kolios, Ryerson Univ. (Canada)

Photoacoustic detection of gold nanorods tagged prostate cancer cells in vitro [7177-71]
S. K. Gupta, K. Katti, J. A. Viator, Univ. of Missouri, Columbia (United States)

Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation [7177-72]
E. M. Spradling, J. A. Viator, Univ. of Missouri, Columbia (United States)

SESSION 16 FREQUENCY DOMAIN AND TIME REVERSAL IMAGING

Object orientation in RF field determines thermoacoustic contrast [7177-74]
S. K. Patch, L. Yan, Univ. of Wisconsin, Milwaukee (United States)

Information changes and time reversal for diffusion-related periodic fields [7177-76]
P. Burgholzer, F. Camacho-Gonzales, D. Sponseiler, Upper Austrian Research GmbH (Austria); G. Mayer, FHOOE Forschungs & Entwicklungs GmbH (Austria); G. Hendorfer, Upper Austria Univ. of Applied Sciences (Austria)

POSTER SESSION

Development of catheters for combined intravascular ultrasound and photoacoustic imaging [7177-77]
A. B. Karpiouk, B. Wang, S. Y. Emelianov, The Univ. of Texas at Austin (United States)

Photoacoustic molecular imaging using single walled carbon nanotubes in living mice [7177-78]
Design and characterization of a photo-acoustic lens to generate tightly focused and high frequency ultrasound [7177-79]
H. Baac, T. Ling, S.-W. Huang, S. Ashkenazi, L. J. Guo, Univ. of Michigan (United States)

Spectroscopic intravascular photoacoustic imaging of neovasculature: phantom studies [7177-80]
J. L. Su, B. Wang, S. Y. Emelianov, The Univ. of Texas at Austin (United States)

Opto-photo-thermo-elastic displacement detection using coherent confocal microscope [7177-82]
I. Eliyahu, C. A. DiMarzio, Northeastern Univ. (United States)

Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes [7177-83]
Y. Yamaoka, T. Takamatsu, Kyoto Prefectural Univ. of Medicine (Japan)

Wideband photoacoustic tomography using polymer microring resonators [7177-84]
S.-L. Chen, S.-W. Huang, T. Ling, S. Ashkenazi, L. J. Guo, Univ. of Michigan (United States)

In vivo photoacoustic monitoring of photosensitizer in skin: application to dosimetry for antibacterial photodynamic treatment [7177-85]
A. Hirao, Keio Univ. (Japan); S. Sato, D. Saitoh, N. Shinomiya, H. Ashida, National Defense Medical College (Japan); M. Obara, Keio Univ. (Japan)

Cell viability studies of PEG-thiol treated gold nanorods as optoacoustic contrast agents [7177-86]
S. Manohar, R. Rayavarapu, W. Petersen, Univ. of Twente (Netherlands); T. G. van Leeuwen, Univ. of Twente (Netherlands) and Univ. of Amsterdam (Netherlands)

A study on optical modulation signal and tissue displacement in ultrasound modulated optical tomography [7177-87]
R. Li, D. S. Elson, C. Dunsby, R. Eckersley, M.-X. Tang, Imperial College London (United Kingdom)

Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array [7177-88]
M. Roumeliotis, P. Ephrat, J. J. L. Carson, Lawson Health Research Institute (Canada) and Univ. of Western Ontario (Canada)

Novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography using carbon nanotubes (CNTs) as a dual contrast agent [7177-89]
M. Pramanik, G. Ku, C. Li, Washington Univ. in St. Louis (United States); M. Swierczewska, D. Green, B. Sitharaman, SUNY at Stony Brook (United States); L. V. Wang, Washington Univ. in St. Louis (United States)

Compact semiconductor laser sources for photoacoustic imaging [7177-90]
C.-S. Friedrich, M.-C. Wawreczko, M. P. Mienkina, N. C. Gerhardt, G. Schmitz, M. R. Hofmann, Ruhr-Univ. Bochum (Germany)
Monitoring the healing process of laser-induced microvascular lesions using optical-resolution photoacoustic microscopy (Best Poster Award) [7177-91]
S. Hu, K. I. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

The speckle-free nature of photoacoustic imaging [7177-92]
Z. Guo, L. Li, L. V. Wang, Washington Univ. in St. Louis (United States)

Enhanced sensitivity carbon nanotubes as targeted photoacoustic molecular imaging agents (Best Poster Award) [7177-93]

Noninvasive photoacoustic sentinel lymph node mapping using Au nanocages as a lymph node tracer in a rat model [7177-94]
K. H. Song, C. Kim, C. M. Cobley, Y. Xia, L. V. Wang, Washington Univ. in St. Louis (United States)

M-mode photoacoustic flow imaging [7177-95]
H. Fang, K. Maslov, L. V. Wang, Washington Univ. in St. Louis (United States)

Ultrasound-modulated optical microscopy for ex vivo imaging of scattering biological tissue [7177-96]
S.-R. Kothapalli, L. V. Wang, Washington Univ. in St. Louis (United States)

Author Index
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chairs

Steven L. Jacques, Oregon Health & Science University (United States)
William P. Roach, Air Force Research Laboratory (United States)

Conference Chairs

Alexander A. Oraevsky, Fairway Medical Technologies, Inc. (United States)
Lihong V. Wang, Washington University in St. Louis (United States)

Program Committee

Mark A. Anastasio, Illinois Institute of Technology (United States)
Paul C. Beard, University College London (United Kingdom)
Claude Boccara, Centre National de la Recherche Scientifique (France)
Gerald J. Diebold, Brown University (United States)
Charles A. DiMarzio, Northeastern University (United States)
Stanislav Y. Emelianov, The University of Texas at Austin (United States)
Rinat O. Esenaliev, The University of Texas Medical Branch at Galveston (United States)
Martin Frenz, Universität Bern (Switzerland)
Steven L. Jacques, Oregon Health & Science University (United States)
Robert A. Kruger, OptoSonics, Inc. (United States)
Pai-Chi Li, National Taiwan University (Taiwan)
Andreas Mandellis, University of Toronto (Canada)
Matthew O'Donnell, University of Washington (United States)
Günther Paltat, Karl-Franzens-Universitaet Graz (Austria)
Wiendelt Steenbergen, Universiteit Twente (Netherlands)
William M. Whelan, University of Prince Edward Island (Canada)
Vladimir P. Zharov, University of Arkansas for Medical Sciences (United States)
Quing Zhu, University of Connecticut (United States)
Session Chairs

1. Clinical Applications
 Alexander A. Oraevsky, Fairway Medical Technologies, Inc. (United States)

2. Toward Clinical Applications
 Steven L. Jacques, Oregon Health & Science University (United States)

3. Preclinical Imaging in Small Animals
 Robert A. Kruger, OptoSonics, Inc. (United States)

4. High-Resolution Imaging/Microscopy
 Lihong V. Wang, Washington University in St. Louis (United States)

5. New Optoacoustic Systems
 Martin Frenz, Universität Bern (Switzerland)

6. New Transducers and Arrays
 Wiendelt Steenbergen, Universiteit Twente (Netherlands)

7. Improving and Testing System Parameters
 Rinal O. Esenaliev, The University of Texas Medical Branch at Galveston (United States)

8. Combined Ultrasound and Optoacoustics
 Stanislav Y. Emelianov, The University of Texas at Austin (United States)

9. Quantitative Optoacoustic Imaging and Modeling
 Benjamin Cox, University College London (United Kingdom)

10. Signal Processing and Image Reconstruction
 Mark A. Anastasio, Illinois Institute of Technology (United States)

11. Ultrasound Modulated (Acousto-Optical) Imaging I
 Claude Boccara, Centre National de la Recherche Scientifique (France)

12. Ultrasound Modulated (Acousto-Optical) Imaging II
 Charles A. DiMarzio, Northeastern University (United States)

13. Molecular Imaging and Sensing Using Nanoparticles
 Alexander A. Oraevsky, Fairway Medical Technologies, Inc. (United States)

14. Monitoring Thermal Lesions
 William M. Whelan, University of Prince Edward Island (Canada)
15 Imaging with Optical Detectors
Günther Paltauf, Karl-Franzens-Universität Graz (Austria)

16 Frequency Domain and Time Reversal Imaging
Xueding Wang, University of Michigan (United States)

Poster Session
Quing Zhu, University of Connecticut (United States)
Introduction to the 10th Proceedings of
Photons Plus Ultrasound: Imaging and Sensing

This year marks the 10th anniversary of our conference. In these years we saw continuous and dynamic growth of our community and the corresponding number of inventions, peer-reviewed publications, and conference abstracts. It is significant that this year's conference was the biggest ever--with 98 papers submitted and 92 papers presented! The reports presented this year can be characterized as very mature, with deep theories and experiments performed in live subjects or equally complex phantoms.

The technologies developed by our community, optoacoustic (photoacoustic) imaging and sensing, attracts continuously growing interest from the medical imaging industry.

In order to recognize the leading researchers and attract young investigators to the field, in 2005 we established the Best Paper Award, sponsored by Fairway Medical Technologies of Houston, Texas. The following Best Papers have been presented:

2007: "Detection and noninvasive diagnostics of breast cancer with two color laser optoacoustic imaging system" by S. A. Ermilov, A. Stein, A. Conjusteau, R. R. Gharib, R. Lacewell, T. Miller, S. Thompson, P. Otto, B. McCorvey, T. Khamapirad, M. Leonard, and A. A. Oraevsky (Fairway Medical Technologies (Houston, Texas), Seno Medical Instruments (San Antonio, Texas), Univ. of Texas Cancer Therapy and Research Center, San Antonio, and Univ. of Texas Medical Branch at Galveston.

2008: "3D photoacoustic imaging system for in vivo studies of small animal models" by E. Z. Zhang, J. Laufer, R. B. Pedley, P. Beard, Univ. College London (UK).
This year, our congratulations go to **H-P. Brecht** and the entire teams from Fairway Medical Technologies and Seno Medical Instruments, recipients of this year’s Best Paper Award. Their paper entitled “Optoacoustic 3D whole-body tomography: experiments in nude mice” represents a leap in the systems for preclinical research, showing impressive images of the mouse body, organs and vasculature.

This year’s competition was very close, which motivated 14 members of the organizing committee to also recognize the second-best paper entitled: “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents” by **K. Homan**, J. Shah, S. Gomez, H. Gensler, A. B. Karpilouk, L. Brannon-PEppas, and S. Y. Emelianov, The Univ. of Texas at Austin.

In addition to oral papers, 20 poster papers were presented this year as part of our conference. The poster session exceeded everybody’s expectations in terms of the depth and excitement of discussions. We hope that very interesting poster sessions will no longer be of any surprise to the attendees. In order to motivate researchers to present their papers as posters, this year we established the Best Poster Award, which will be annual tradition. Due to a strong competition, two equally interesting posters received the 2009 award:

Manuscripts included in this volume have been editor-reviewed by the two conference Chairs based on oral presentations and posters. Due to copyright conflicts, not all of these papers will appear in scientific journals. Therefore, this volume of SPIE Proceedings can serve as a comprehensive current status report for researchers and doctors working in the field of preclinical and clinical medical imaging employing photons and ultrasound.

Alexander A. Oraevsky
Lihong V. Wang