
Undersampled Dynamic Tomography with separated spatial
and temporal regularization

Xiufa Caoa, Yinghui Zhanga, Ran Ana, and Hongwei Lia

aThe authors are with the school of Mathematical Sciences, Capital Normal University,
Beijing, 100048, China.

ABSTRACT
Dynamic tomography finds its usage in certain important applications. The reconstruction problem could be
cast in the Bayes framework as a time series analysis problem, such that the Kalman filter(KF) could come into
play. A series of drawback of such an approach lies in its high computational and storage complexity. Dimension
reduction Kalman filter (DR-KF) method has been proposed in the literature to relieve such a pain. However,
our tests show that DR-KF results in heavy ringing artifacts. To solve this dilemma, in this paper, we propose
to approximate the regularization term involving the precision matrix with a spatial regularization term plus a
temporal regularization term, such that the space and time complexity are greatly reduced. Besides, to get the
original Kalman filter into play, we propose a blocked KF for backward smoothing, i.e. split the reconstructed
image slices into small overlapping blocks, and the KF is applied on each block. The blocked KF has much
smaller computational and storage complexity, and fits well for parallel computations. Numerical experiments
show that the proposed approach achieves better reconstructions while calling for much smaller computational
resources.

Keywords: Dynamic X-ray tomography, Kalman filter, Dimension reduction, ringing artifacts, TV regulariza-
tion

1. INTRODUCTION
Computed tomography (CT), as a noninvasive method, is widely used in many applications to reveal the inner
structure of a target. In biomedical applications, however, the target is usually non-stationary so that the
projection measurements are time-dependent. That is, the target changes during the scanning, a case commonly
referred as dynamic tomography. Such changes can be periodic (e.g., the beating of a heart) or aperiodic
(e.g., the flow of contrast agent in a blood vessel), in each case, the reconstruction problem becomes severe
ill-posed. If traditional static CT reconstruction methods (such as FBP, ART, IART, etc.) are directly applied,
the reconstructions will be degraded seriously (e.g., being blurred or getting other artifacts), even if with small
motions. A number of approaches have been proposed for dynamic CT reconstructions. For very slow or periodic
movements, e.g. heart and lung imaging, gating techniques can be used.1,9 That is, the scanning is executed at
specific time during the periodic motion, or the acquired projection data are selected according to the periodicity.
For general motions, motion compensation techniques can be used to improve the reconstruction quality.2–5,7

By motion compensation, prior information about the underlying dynamic process can be utilized by the CT
reconstruction algorithms. However, this technique usually assumes simple or known motion, which is not the
case for a wide variety of complex motions.

Dynamic CT reconstruction aims to reconstruct a series of image slices, while each image slice undergoes very
limited resources, i.e. undersampled scanning. To reduce artifacts and improve reconstruction quality, many
methods have been proposed in the literature by incorporating various priors. One of the main approach is to
cast the reconstruction problem under the Bayesian framework. Then, the priors could be naturally encoded
by the prior distribution, and by employing the Kalman filter, priors concealed between image slices could also
be easily modelled and brought into the reconstruction process. A serious drawback of this approach is that
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the precision matrices, which are used to encode the needed priors, are usually non-sparse huge ones. Besides,
the inversion of these large-scale matrices are needed during the reconstruction process, which is not applicable
for real applications. To address this issue, the dimension reduction Kalman filter (DR-KF) was introduced in6

to reduce the computational complexity. This is actually an effective method to serve the purpose. However,
images reconstructed by this method are often smeared by “ringing” artifacts. In our experiments, even a small
portion of dimension reduction leads to clear sharp ringing.

To combat the ringing artifacts and reduce the computational complexities, in this paper, we will introduce
a splitting technique to approximate the priors encoded by the precision matrices with a spatial prior plus a
temporal prior. This approximation helps to greatly reduce the computational complexity and totally avoid the
ringing artifacts. Besides, to further improve the reconstruction quality, we propose a block-wise Kalman filter
for the backward smoothing pass, which calls for much less computations and achieves very close performance
compared to the original Kalman filter.

The remainder of this paper is organized as follows. In Section 2, we will briefly introduce the DRKF
method for dynamic X-Ray tomography and analyze its ”ringing” artifacts. Then, the proposed method shall
be described in details. Numerical experiments are performed in Section 3 to validate the proposed method.
Finally, we conclude our paper in Section 4.

2. MATERIALS AND METHODS
2.1 Dynamic X-Ray Tomography
In dynamic X-ray tomography, the attenuation variable x⃗ is a function of the “time” k ∈ N . In a discrete setting,
x⃗(k) is a two-dimensional image, which is related to the observation y⃗k by the following model

y⃗k = Akx⃗k + ε⃗k. (1)

In tomography, y⃗k is the measurement vector called sinogram, x⃗k is the vectorized image, Ak is the measurement
matrix and ε⃗k represents noise distribution. Thus, in dynamic X-ray tomography, the aim is to reconstruct a set
of images changing over time.

2.2 Dimension Reduction Kalman filtering
In Bayesian framework, prior probability distributions are introduced to bring into prior knowledge. Suppose
x⃗k ∼ N(µ⃗k,Σk), ε⃗k ∼ N(0, Rk), then the posterior density can be written as8

p (x⃗k | y⃗1:k) ∝ exp

(
−1

2

(
∥y⃗k −Akx⃗k∥2Rk

+ ∥x⃗k − µ⃗k∥2Σk

))
.

In linear Kalman filtering, a linear operator is introduced to model the state transfer process. The KF is
generally divided into two steps: prediction and update, which could be described as

x⃗k =Mkx⃗k−1 + ξ⃗k,

y⃗k = Akx⃗k + ε⃗k,

where the matrix Mk moves the previous state x⃗k−1 to x⃗k. Take the transferred state as a prediction, the
complete process can be written as

p (x⃗k | y⃗1:k) ∝ exp

(
−1

2
∥y⃗k −Akx⃗k∥2Rk

+ ∥x⃗k − x⃗pk∥
2

Cp
k

)
,

where

x⃗pk =Mkx⃗
est
k−1,

Cp
k =MkC

est
k−1M

T
k +Qk,

(2)
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x⃗estk = x⃗pk + Cest
k AT

kR
−1
k (y⃗k −Akx⃗

p
k) ,

Cest
k =

(
AT

kR
−1
k Ak + (Cp

k)
−1
)−1

.
(3)

Direct application of the the above procedure is very time consuming. Suppose the image slices are size of
N×N . The precision matrix (Cp

k)
−1, which are size of N2×N2 dense matrices, are involved in the computations,

which is not affordable even for small images like N = 128. To reduce the computational complexity, the
dimension reduction Kalman filter is introduced for dynamic tomography in.8 It starts by parameterizing the
state x⃗k = µ⃗k+Pk,rα⃗k, where Pk,r is constructed by the first r largest singular values of Cp

k and the corresponding
singular vectors. By setting a small r, the computational complexity shall be sharply reduced since the matrices
involved in the computations are now size of r2 × r2. However, the SVD decompositions, which operate on the
original matrices are required for each state updating, which is still very time consuming. This is solved by
assuming that all variations x⃗k = µ⃗k − µ⃗k live in the same fixed subspace, i.e. fixing Pk,r = P0,r ≜ Pr, which
can be built by performing SVD decomposition once on the initial covariance matrix Cp

0 = Σ. Let Σ = USUT ,
then Pr = UrS

1/2
r , and (2) and (3) can be rewritten as:

x⃗pk =Mk(x⃗
p
k−1 + Prα⃗

est
k ),

Cp
k = (MkPr)Ψ

est
k (MkPr)

T +Qk,

where
α⃗est
k = Ψest

k (AkPr)
T
R−1

k (y⃗k −Akx⃗
p
k) ,

Ψest
k =

(
(AkPr)

T
R−1

k (AkPr) + PT
r (Cp

k)
−1
Pr

)−1

.

It has been mentioned in6 that the reconstructed images from the dimension reduction KF might suffers from
“ringing” artifacts. This is demonstrated in the following experiment.

Let the image slices are size of 128× 128, and assume the standard prior Gaussian covariance matrix,6 which
is then size of 16384× 16384 with the (i, j)th element defined as

Σi,j = σ2 exp

(
−d (xi, xj)

2

2l2

)
,

where σ2 and l are configuration parameters, and d (xi, xj) denotes the Euclidean distance between pixels xi and
xj .

Both observation and model error covariance matrices are set to σ2I and Mk = I, σ = 0.1, l = 1.5. The
phantom3d function in MATLAB is employed to construct the dynamic images with 33 slices. The open-source
library ASTRA is utilized to perform the forward and backward projections. There are only 5 projection views
at each moment. The reconstruction results from the dimension reduction Kalman filter (DR-KF) with r = 1000
are shown in Fig.1. As shown in the last two columns, heavy ringing artifacts presents for the time-frame t = 15
and 20. At the early stage, the image slices suffer from severe undersampling artifacts and the ringing artifacts
are buried inside. When the image slices getting better reconstructed, the ringing artifacts also show up and
then persist in subsequent reconstructions.

To further verify the ringing artifacts, another experiment is performed to demonstrate the influence of the
ratio of dimension reduction. As shown in Figure 2, by increasing the dimension parameter r, the ringing
artifacts are suppressed. However, even for r = 12000, which amounts to a reduction ratio 12000/16384 ≈ 73%,
the ringing artifacts are still observable. For r = 5000, which amounts to a ratio 3/10, heavy ringings present.
Clearly, such a reduction ratio is far from satisfactory, since the computational complexity is still very high.

One may argue that the ringing artifacts could be introduced by improper choice of the configuration param-
eters for the Gaussian prior. So, another experiment is performed with various parameter settings. As shown
in Figure 3, the parameters σ and l do have some influence on the ringing artifacts. However, they just have
certain influence on the ringing patterns rather than on the magnitude of the ringings.
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Figure 1. Illustration of ringing artifacts from DR-KF. Slices of phantom3d reconstruction at time step t = 1, t = 5, t =
15, t = 20.Dimension reduction (r = 3000) methods with KF (5 angles).

(a) r = 1000 (b) r = 5000 (c) r = 8000 (d) r = 12000

Figure 2. The influence of the ratio of dimension reduction on ringing artifacts. Phantom3d reconstruction at time step
t = 15, σ = 0.1, l = 1.5. Dimension reduction methods with r = 1000, 5000, 8000, 12000, KF(5 angles).

2.3 Our Method
2.3.1 Decomposition of the prior
The computational complexity can be attributed to the regularization term

Φ(x⃗k − x⃗pk) = ∥x⃗k − x⃗pk∥
2

Cp
k
, (4)

which is used to encode the prior information. The complexity of the covariance matrix Ck
p results in a complex

regularizer. This motivates us to approximate the above term with simpler, easier handled terms. The function
Φ could always be decomposed as

Φ(x⃗k − x⃗pk) = ψ(x⃗k) + χ(x⃗pk) + ϱ(x⃗k, x⃗
p
k).

The first two terms can be though of being encoding the priors regarding to x⃗k and x⃗pk, respectively, while the last
term expresses the couplings between adjacent image slices. Since the prior regarding to x⃗pk is not relevant for
the reconstruction of x⃗k, the second term could be removed. So, we propose the following posterior distribution

p (x⃗k | y⃗1:k) ∝ exp

(
−1

2
∥y⃗k −Akx⃗k∥2Rk

+ ψ(x⃗k) + ϱ(x⃗k, x⃗
p
k)

)
.
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Figure 3. The influence of configuration parameters of Gaussian prior on ringing artifacts. Slices of phantom3d recon-
struction at time step t = 1, t = 5t = 15, t = 20. Dimension reduction methods with r = 1000 KF(5 angles).

The regularization term ψ(x⃗k) represents the prior knowledge regarding to the current ideal image x⃗k. This
prior is usually available, e.g. CT images are usually assumed to be piecewise constant and thus possess sparse
gradients. The regularization term ϱ(x⃗k, x⃗

p
k) models the continuity along the temporal axis. A simple strategy

is to just take x⃗pk as a prior reference image.
So, we are proposing to decompose the regularization term involving the covariance matrix into a spatial

regularization term plus a temporal regularization term. By choosing these two regularizers properly, the com-
putations could be greatly reduced and ringing artifacts could also be completely avoided.

2.3.2 The online forward pass
By choosing total variation regularization for the spatial regularizer, we propose the following model for dynamic
tomography reconstruction

x⃗pk =Mkx⃗
est
k−1,

x⃗∗k = argmin
x⃗k

1

2

(
∥y⃗k −Akx⃗k∥2Rk

+ λ ∥x⃗k − x⃗pk∥
2

2
+ β |∇x⃗k|

)
,

(5)

where the parameter λ weights the importance of the prior image x⃗pk, while β weights the spatial prior. To solve
the above minimization problem, the primal-dual based Chambolle-Pock (CP) algorithm is employed.

2.3.3 Block Kalman Filter
In the Kalman filtering framework, a backward smoothing procedure is usually applied for offline reconstructions.
When all the projection data have been acquired and all image slices have been reconstructed, then the Kalman
filter could be applied once more reversely starting from the last image slice. The backward smoothing procedure
could significantly further improve the reconstruction quality.
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However, the backward filtering suffers from the same drawbacks as the forward filtering. To take advantage
of the backward smoothing, we propose two approximations to reduce the computational complexity. The first
one is to replace the system matrix Ak by identity matrices. This is reasonable since all the image slices have
been reconstructed. The second one is to decompose the filtering into blocks, i.e. decomposing the image slices
into overlapping blocks and applying the Kalman filter on each block. The final results are synthesized from the
filtered blocks.

With much less computations, the block Kalman filter could attain almost the same smoothing results as
the non-block version does. For example, for an image size of 256 × 256, we can divide it into 81 overlapping
blocks such that each block is size of 32×32. In the block Kalman filtering process, the covariance matrix size of
65536×65536 is replaced by 81 image blocks size of 1024×1024. Clearly, storage and computational complexities
shall be dropped considerably.
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(a) t = 1 (b) t = 10 (c) t = 30

Figure 4. Different reconstructions of the shepp-logan phantom with the forward pass(top), the block-KF smooth-
ing(middle), and the reference imagse at time step t = 1, 10, 30.

3. NUMERICAL EXPERIMENTS
Similarly, in the phantom3d simulated data, which is size of 256× 256× 256, we take 50 consecutive slices in the
vertical direction. The projection data are acquired with 10 equally distributed scanning angles for each slice.
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Table 1. PSNR of different methods for different frames
Method \Time t = 1 t = 10 t = 30

The forward pass 19.0807 19.2380 20.5397
KF smoothing 17.5414 19.7271 20.7552

Block-KF smoothing 19.4299 19.8850 21.1628

We set Rk = I,Qk = 0.1 ∗ I. The experiments are carried out on a Linux server with two Intel(R) Xeon(R)
Gold 6132 CPUs @ 2.60GHz and 256G memory. The server is also equipped with 8 Nvidia GeForce RTX 2080
Ti GPU cards, and ASTRA (http://www.astra-toolbox.com/) uses one of them for applying the forward and
backward projectors.

The reconstruction results are illustrated in Fig. 4. As shown in the first row, the ringing artifacts have been
completely avoided in the image slices reconstructed by the proposed forward pass, i.e. the online reconstruction
procedure. The backward smoothing could help to reduce noise, as shown in the second row. However, structuring
information could also be wrongly propagated back during the backward smoothing pass. In fact, we also
implemented the non-block version of the Kalman filtering for the backward smoothing pass, and the results of
block version is a little better than those of the non-block. This can be told from the quantitative indices listed
in Table 1. It should be mentioned that, to process one image, the block-KF takes 7s for one image, while the
non-block KF takes about 4000s.

4. CONCLUSION
To reduce the computational complexity of the Kalman filtering approach for dynamic X-ray tomography, we
propose to approximate the regularization term involving the covariance matrix with two simpler regularization
terms, one accounts for spatial correlation while the other one accounts for temporal correlations. The resulting
method calls for much less storage and computational complexity while achieves competitive reconstructions.
Besides, a block version of the Kalman filter is proposed for the backward smoothing procedure, which achieves
similar smoothing behavior compared to the non-block one while again requires much less computational re-
sources.

In our numerical experiments, the matrix Mk is always set as the identity matrix. In fact, we can also use
the optical flow method to compute a better Mk such that the reconstruction quality could be further improved.
This shall be investigated soon.

In order to further improve the computation speed, we also plan to use GPU and deep learning methods to
approximate the forward reconstruction pass.
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