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ABSTRACT  

Soil is the life support system of terrestrial ecosystems, making comprehending its processes and functions vital for global 

food security, global climate change regulation, and achieving sustainability in agriculture. Knowledge of soil processes 

and up-to-date soil status is a prerequisite for sustainable environmental management and reducing decision-making risks. 

Over the past decades, the notable introduction and adoption of digital technologies in Remote Sensing (RS), the 

improvement of spatial data applications, the development of quantitative techniques to understand soil patterns, and the 

detailed visualization of soils through new applications have increased our capacity to predict, assess, and explain soil and 

its patterns. 

The current review paper, apart from accessing techniques/applications of RS and Proximal Sensing (PS) utilized towards 

soil mapping predictions, extends its interest in demonstrating the increasingly crucial role of RS and PS utilized to 

determine soil attributes such as texture, soil moisture, soil organic carbon (SOC) and iron content. Limitations and the 

difficulties of remote and proximal sensing are overviewed, while additionally, the crucial issue of accuracy of the 

classification of the thematic maps derived is addressed. Furthermore, this review paper aims to review the status of current 

mapping methods and provide more profound and more detailed insight into techniques in contemporary systematic soil 

mapping.   

Keywords: Soil mapping methods, Remote & Proximal Sensing, Soil variables prediction, Multivariate statistical 

techniques. 

INTRODUCTION 

Over the last decades, implementing advanced geo-information techniques has offered remarkable results towards an 

accurate and efficient improvement in soil mapping. However, a challenging but promising effort on existing global soil 

maps is to document and calculate their accuracy precision to any usability issues when combined and examined with other 

global environmental layers [1]The first attempt to establish relationships between soil formation and soil properties dates 

to the 1990s [2]. Nowadays, the rapid advancement and availability of Geographic Information Systems (G.I.S.), high 

spatial and temporal resolution Digital Elevation Models (DEMs), predictive statistical models, and numerous applications 

for data analysis have advanced the potential within scientific soil surveying.  

This paper outlines the fundamental principles of Remote and Proximal Sensing technologies for mapping and predicting 

soil attributes. It also seeks to assess the current mapping methodologies and provide more profound and detailed insight 

into contemporary soil mapping techniques. Finally, this review delves into the methods used to determine soil properties 

such as soil moisture, iron content, soil texture, and SOC. 

Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), edited by 
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Various techniques can be employed, including direct, indirect and correlative methods to measure soil attributes. For 

instance, Ion-Sensitive Field Effect Transistors (ISFET) can directly measure soil pH. At the same time, the indirect 

approach involves the utilization of Visible-Near Infrared (VIS-NIR) spectroscopy [3]. Spanning from 2006 to 2023, this 

review paper identified sixteen studies (Table 1) that specifically focus on Digital Soil Mapping Methods (DSMM). The 

preliminary examination of articles commenced with the amalgamation of keywords like "Digital Soil Mapping", "Remote 

Sensing", and "Soil Attributes" with "Imaging Spectroscopy" and "Soil Classification" in the Google Scholar search 

engine. A total of over twenty thousand articles were retrieved during this phase. Subsequent refinement of the article list 

involved a focus on terms such as "Accuracy-Uncertainty in Digital Soil Mapping" and specific soil attributes like "SOC", 

"Iron Content", "Soil Moisture", and "Soil Texture". In the final screening process, articles about study areas spanning the 

globe were chosen for further review. Finally, the following criteria to select studies were appointed:  
• Predicted soil attributes

• Sampling numbers of soil samples (N), soil profiles/number of observation sites (SP), number of soil layers/horizons

(SL), and frequency/period (F)

• Soil geographic region

• Spatial scale

• Digital mapping methods and multivariate methods employed

• Final R2 coefficient results

• DSMM assessment mode with model development only (M), cross-validation (CV), and validation (V).
 

 

2. MATERIALS AND METHODS
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Table 1. DSMM papers reviewed. 

References Soil attribute Sampling Spatial Scale Region 

Digital 

/Multivariate 

Prediction 

Models 

Coefficient R2 
Assessment 

mode1 

Grinand et al 

(2012) [4] 
SOC N-2086

16*16km grid 

cells 
France MIR -PLSR 0.89 M, V 

Zhang et al 

(2019) [5] 

Soil Organic 

Matter (SOM) 
N-787

Random area 

sampling 
China 

NDVI index -

SLR, PLSR, 

ANN, OK 

SLR:0.281 PLSR: 

0.283 

OK: 0.372 ANN: 

0.391 

M, V 

Gholizadeh et 

al (2018) [6] 

Moisture 

Content (MC), 

Clay, Silt, 

Sand 

N-40

Random area 

sampling 

from 142ha 

Malaysia 
VIS/NIRS - 

SMLR 

VIS/ 

Db:0.99, 

MC:0.82, 

Clay:0.99 

Silt:0.97, 

Sand:0.96 

M, V 

Odebiri et al 

(2022) [7] 
SOC 

N-1936

SL-

0.30cm 

1,221,037km2 
South 

Africa 

DNN, 

(Random 

Forest) RF, 

ANN, SVM 

Sentinel series 

data 

Deep Neural 

Networks (DNN) 

R2:67.3, 

RMSE:10.35(t/ha) 

RF 

R2:64.7, 

RMSE:11.2(t/ha) 

ANN 

R2:63.4, 

RMSE:11.6(t/ha) 

SVM 

R2:58, 

RMSE:13.6(t/ha) 

CV 

Ben-Dor et al 

(2009) [8] 

SOM, PH, 

Soil saturated 

moisture 

(SM), 

Electrical 

Conductivity 

(EC). 

N-62
Sample per 

30*30m 
Israel 

VIS/NIR-

SWIR 

SOM:0.837, 

PH:0.883 

SM:0.81, 

EC:0.874 

M, V 

Vaudour et al 

(2019) [9] 

SOC, CaCO3, 

Clay, Silt, 

Sand, Iron, 

PH, Cation 

Exchange 

Capacity 

(CEC) 

N-215

SL (1st 

site) 

0-8cm

SL (2d

site)

0-5cm

221km2 France 

(2 sites) 
PLSR 

Indicatively: 1st 

Site 

SOC R2: 0.56, 

RMSE: 1.23 

CaCO3 R2: 0.48, 

RMSE: 20.3 

Clay R2: 0.39 

RMSE: 1.23 

Silt R2: 0.14 

RMSE: 103.0 

CV 

1 M: model, V: Validation, CV: Cross Validation. 
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Sand R2: 0.22 

RMSE: 81.7 

Iron Content R2: 

0.05 RMSE: 0.09 

PH R2: 0.51 

RMSE: 0.51 

CEC R2: 0.75 

RMSE: 1.23 

Bilgili et al 

(2010) [10] 

CaCO3, SOM, 

PH, EC, 

Clay, Silt, 

Sand 

N-512

SL-up to

30cm 

25*25m grid 

from 32ha 
Turkey 

VNIR-

PLSR&MARS 

PLSR/ 

CaCO3:0.65, 

SOM:0.75, 

PH:0.30, EC:0.30 

Clay:0.84, 

Silt:0.37, 

Sand:0.80 

MARS/ 

CaCO3:0.79, 

SOM:0.79, 

PH:0.35 

Clay:0.89, 

Silt:049, 

Sand:0.84 

M, CV 

Asfaw et al 

(2018) [11] 

Salinity index 

(SI) through 

EC 

quantifying 

- 6.539ha Ethiopia 

Landsat TM 

data 2012, 

computation of 

six RS indices 

- RMSE

0.78 M, V 

Ali Aldabaa et 

al (2015) [12] 

SI through EC 

quantifying 

N-165

from 

2 areas 

SL- 0-

5cm 

Two sites USA 

VNIR DRS -

PLS, SVR 

PXRF, RS -

PLSR 

VNIR DRS/ 

PLS:0.91, 

SVR:0.89 

PXRF/ 0.72 

RS (Landsat)/ 

0.48 

M, CV 

Richter et al 

(2009) [13] 

Fe oxide 

content 
N-50

SL-0-2cm 
6.200ha Spain 

VNIR DRS – 

RMSE, rel. 

RMSE 

RMSE/ 

(texture-

dependent model- 

sand group):0.87 

rel. RMSE/ 

(texture-

dependent model- 

sand 

group):13.9% 

M, CV 

Dvorakova et al 

(2023) [14] 
SOC 

N-124

SL-0-

10cm

16.900km2 
Belgium - 

Netherlands 

PLSR-

Bootstrapping 

calibration 

Model Efficient 

Coefficient 

(MEC): 0.48 

RMSE: 3.5 

M, CV 

Swain et al 

(2021) [15] 

Soil texture 

fractions 

N-295

SL-0-

10cm

2.712km2 India 
RF – SVR 

Sentinel series 

data 

RF (sand and silt) 

Highest measured 

value for sand: 

CV 
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R2:0.50 with 

RMSE 11.6% - 

for silt: R2:0.46 

with RMSE 5.8% 

SVR (clay) 

Highest measured 

value R2: 0.44 

with RMSE 6.9% 

Viscarra Rossel 

et al (2006) 

[16] 

Organic 

carbon, CEC, 

Lime 

requirement, 

Clay, Silt, 

Sand, 

Exchangeable 

aluminium 

(Al), 

Available P, 

K, EC. 

SL-0-

20cm 

17.5ha Australia 

VIS, NIR, 

MIR, 

Combination 

VIS-NIR-MIR 

- RMSE

Quoting the 

combination 

method/ 

OC:0.72, 

CEC:0.09, 

LR:0.74 

Clay:0.67, Silt: 

0.52, Sand: 0.75 

Al:0.37, P:0.07, 

K:0.46, EC:0.29 

M, V 

Lu et al (2008) 

[17] 

24 soil 

attributes 

N-200

SL-0-

15cm 

Two crop 

fields 
USA 

PMF - 
M 

Paul et al 

(2022) [18] 

Total organic 

carbon (TOC), 

Permanganate 

Oxidizable 

Carbon 

(POXc) 

N-270

SL-0-

15cm 

3.700ha Nova Scotia 

Landsat 8 

Level 2 

surface 

reflectance 

images (Path 

8/Row 28 or 

Path 7/Row 

29), LiDAR-

derived DEM. 

Quantile 

Regression Forest, 

Gradient Boosting 

Model/ 

TOC:0.60, 

POXc:0.40 

CV 

Kaya et al 

(2022) [19] 

SOC and 

available P 

SL- 0-

20cm 

280 

locations 

- 
Northeast 

Iran 

Landsat 8 OLI 

(2018–2021) 

and Sentinel 

2A MSI Level 

Random Forest, 

Cubist packages 

of the R software/ 

Available 

Phosphorus 

Coefficient of 

variation (%) 

85.74. 

SOC (%)—

Coefficient of 

variation (%) 

45.83 

CV 
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3. RESULTS

3.1. Digital Soil Mapping (DSM) 

The orology DSM was initially conceived as the act of generating and fusing spatial soil information through the 

application of field and laboratory observational methods alongside spatial and non-spatial soil inference systems [20]. 

The DSM method gained increased popularity for providing detailed and up-to-date data about soils [21];[22]; [23]. DSM 

presents itself as a flexible, quantitative, and precise method; nevertheless, it is essential to underscore specific significant 

points. The applicability of DSM models to diverse regions with distinct characteristics and profiles is primarily complex, 

as the prediction models are developed for each particular area. Furthermore, unlike conventional soil mapping products, 

DSM maps are designed with specific objectives rather than for general use. A crucial point to consider is the uncertainty 

parameter in the DSM products since the created models are approximations of reality. Some sources of uncertainty include 

the covariate accuracy and the model structure [24]. Random and systematic errors found in observations and covariates 

also represent a significant factor in the uncertainty [25]. The quantification of uncertainty in several models applied within 

DSM, notably kriging models such as regular kriging and kriging with external drift, has attracted substantial attention 

[26]. There is a notable uptick in the utilization of machine learning algorithms (ML) within the DSM, which are employed 

to forecast conditional quantiles [27]. Within uncertainty quantification, DSM utilizes prediction intervals to estimate the 

likely range of values for an actual measurement. A commonly used threshold in this context is the 90% prediction interval 

(PI) [21], which denotes the range of values where one can expect to find a new measurement nine times out of ten [28]. 

The frameworks proposed for assessing uncertainty in DSM are organized into three main classifications: spatial prediction 

frameworks, probabilistic frameworks, and frameworks that synthesize both spatial characteristics and probabilistic aspects 

to yield spatially explicit realizations [29]. 

3.2. Remote Sensing (RS) 

A plethora of research studies have been conducted to explore the potential of RS in soil mapping surveys. These 

investigations have consistently indicated a significant increase in the effectiveness of conventional methods when RS data 

is incorporated [20]. 

Spatial models rely on accurate data regarding the continuous variations in soil properties. To ensure the utmost precision, 

these models require as much detail as possible when utilizing such data as input [30]. One of RS's major drawbacks arises 

at this point, as the predictions are deemed valid only for the very top layer of soils. It is essential to underscore an additional 

condition when analyzing RS data, which pertains to making corrections for atmospheric, geometric, radiometric, and 

topographic effects. An example that is commonly encountered is the interference caused by vegetation, which poses 

challenges to investigations. Once these corrections have been adequately addressed, geostatistical techniques can be 

utilized for spatial interpolation, enabling the mapping of spatial patterns in regions where soil data is limited. 

The reliability of thematic mapping classification achieved via RS techniques is a crucial determinant of its relevance and 

precision for multiple applications. No universally established standard for accuracy in thematic mapping is produced 

through RS methods. Nonetheless, at least 85% accuracy in correct classifications is frequently recognized as the 

aspirational objective target in thematic mapping [31]. The integration of the error matrix technique, commonly referred 

to as the confusion matrix, is employed to address the challenge of accuracy in computer-generated mapping [32]. 

Functioning as a critical, descriptive statistic, the confusion matrix allows for evaluating classification results against 

established ground truth data. However, constructing and interpreting the confusion matrix is fraught with difficulties. 

These difficulties are typically rooted in assumptions that are either unattainable or biased [31]. 

3.3. Proximal Sensing (PS) 

PS alludes to a technological advancement which enables the measurement of soil characteristics from a distance of less 
than 2 meters above the soil surface [33]. PS is predominantly associated with high-resolution soil mapping, usually at 
resolutions less than 20m. Recognizing the concept of applying PS in soil science is of utmost significance. While 
measurements' precision may be lower than conventional mapping techniques, PS facilitates the collection of larger 
volumes of spatial data at a lower cost and through less intricate and more straightforward methods [33]. Table 2 presents 
the suitability of each technology, while below is a description of three primary PS techniques used. 
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Table 2. Suitable PSS for acquiring soil information. 

Sensing technology Depth (m) Dependent property Inferred properties 

Electromagnetic induction (EMI) <1m to 6m 
Resistivity, magnetic, 

permeability, permittivity 

Conductivity, soil water and solutes, 

texture, temperature, salinity 

Electrical resistivity (ER) <1m to <30m Resistivity 
Conductivity, soil water and solutes, 

texture, temperature, salinity 

Induced polarization (IP) <1m to <50m Resistivity, capacitance 
Conductivity and polarization, soil water, 

hydraulic properties, lithology 

Magnetic Sensors <1m to <10km Magnetization 
Magnetic minerals Fe-oxides, structure, 

lithology 

Gravity >1m to<100km Density Lithology, hydraulic properties 

Seismic Reflection (SR) <1m to <500km 
Elastic modulus, acoustic 

impedance, density 

Soil layering, soil structure, soil depth, soil 

density, lithology 

Ground penetrating radar (GPR) <1m to <10m 
Resistivity, magnetic 

permeability, permittivity 
Soil water, texture, soil depth 

Magnetic resonance sounding <1m to <1.5km Proton density Soil water, porosity, hydraulic properties 

γ-radiometrics <1m 
Radioisotopes of Cs, K, 

U, Th 
Total K, mineralogy, clay content, soil type 

3.3.1. The Ground-penetrating radar (GPR) 

GPR is a near-surface geophysical non-destructive technique which creates high-resolution images of the Earth's dielectric 

properties. The fundamental concept behind this principle is that high-frequency electromagnetic waves have the potential 

to reflect or refract when they encounter subsurface features that exhibit changes in their electrical properties [34]. GPR 

makes transmitting and reflecting high-frequency electromagnetic waves within the Earth's subsurface possible. The 

accuracy and level of detail attained through GPR are determined by selecting different antenna frequencies. Higher 

frequencies contribute to enhancing the resolution of the images generated. GPR measures the time it takes for a direct 

ground wave to move from the source to the receiver antenna across the uppermost layer of the ground [35]. Figure 1 

presents a simplified schematic design of a GPR. 

Figure 1. Schematic design of a GPR. 

3.3.2. Electrical resistivity (ER) 

Soil ER refers to the capacity of soil to resist the flow of electrical current. To determine the apparent ER, various methods 
utilize Ohm's law in conjunction with the measured injected current, the potential difference, and a geometric factor. A 
total of four electrodes are required to perform resistance measurements. Two of these electrodes are designated as current 
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electrodes (A and B) and are responsible for injecting the supply current. The other two electrodes, known as potential 
electrodes (M and N), record the potential difference [36]. The calculation of the potential difference in the following 
formula determines ΔV: 

Δ𝑉 =
ρl

2π
[
1

ΑΜ
−

1

ΒΜ
−

1

ΑΝ
+

1

ΒΝ
] (1) 

AM, BM, AN, and BN refer to the geometrical distance between the electrodes A and M, B and M, A and N, and B and 
N, respectively. The formula then expresses the ER: 

ρ = [
2π

(
1
AM

) − (
1
BM

) − (
1
AN

) + (
1
BN

)
]
Δ𝑉

I
(2) 

ρ = Κ
Δ𝑉

l

(3) 

The geometric coefficient K depends on the arrangement of electrodes A, B, M, and N. 
ER varies widely, from 1Ω for saline soils to 105Ω per meter for dry soil overlying crystalline rocks. Figure 2 illustrates 
the typical ranges of resistivity values. 

Figure 2. ER region of earth materials (after Palacky, 1987) [36]. 

3.3.3. Electromagnetic Induction (EMI) 

Initially introduced in agriculture, an electro-magnetic sensor was a tool for quantifying soluble salts and the soil moisture 

index. Electro-magnetic applications in the agricultural field have expanded to include the determination of soil mapping 

units, measurements of topsoil depth in claypan soils, evaluation of herbicide degradation, and assessment of crop 

productivity[37]. 

By utilizing EMI, apparent electrical conductivity can be measured without invasive methods. This measurement is 

associated with various soil properties, including bulk density, soil structure, ionic composition, pH, SOC, and CaCO3 

contents [38]. Such methods to measure ground conductivity involve using a transmitter coil and a single or multiple 

receiver coil positioned at predetermined intervals. 

3.4. Soil Spectroscopy 

The application of soil spectroscopy has become prevalent as a quantitative approach for estimating diverse soil properties. 

Spectroscopy is a quantitative method used in physical and analytical chemistry based on the principle that atoms and 

molecules absorb radiation in distinct wavelengths, resulting in their unique signature spectra [39]. Spectroscopic methods, 

such as mass spectroscopy, visible, near-infrared, and mid-infrared spectroscopy, are being acknowledged as potential 

substitutes for traditional laboratory and field approaches. They aim to enhance and, in some cases, even supplant our 

comprehension of soils.  

Imaging spectroscopy employs airborne or satellite-based hyperspectral sensors to capture the pertinent spectral data 

spatially. Spectroscopy offers several advantages; however, there are certain drawbacks associated with this technique. 

One limitation is that it solely relies on reflectance measurements from bare surfaces to assess soil properties. 
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Consequently, it cannot estimate vertical gradients in SOC within the topsoil. The method is classified as less accurate 

than conventional methods, such as wet oxidation and dry combustion [9]. 

 

3.5. Soil Texture 

 

Vaudour et al. (2019) emphasized the advantages presented by the Sentinel mission in evaluating key top-soil attributes. 

A multitude of methodologies advocates for the application of chemometrics techniques or the identification of specific 

absorption features to compute soil properties using the reflectance regions of visible and near-infrared (VIS-NIR, 400-

1200nm) and shortwave infrared (SWIR, 1200-2500nm) [40]. Distinctive absorption features can differentiate soils rich in 

clay from those rich in quartz. Typically, clay minerals are identified by a hydroxyl absorption at 2200nm, whereas thermal 

bands displaying a reflectance peak corresponding to silica in the range of 8000nm-9500nm indicate the presence of quartz 

[41].  

The correlation between surface soil properties and remotely sensed spectral data at various wavelengths has been explored 

using various laboratory statistical methods. The two most prominent techniques, multiple linear regression (MLR) and 

partial least-square regression (PLSR), are commonly used. 

 

3.6. Soil Moisture 

 

Measurement of soil moisture content on the near-surface can be achieved using optical and thermal infrared RS, as well 

as passive and active microwave RS techniques. Although imaging spectroscopy indices to calculate surface soil moisture 

content have been adopted using the reflectance in the SWIR region, the accuracy of the results was constrained, primarily 

due to shallow soil penetration and the interference caused by cloud cover. 

The Microwave RS method is a supplementary technique for predicting soil moisture. It involves measuring the contrast 

in dielectric properties between dry soil and water, which is derived from the reflected data. 

The Synthetic Aperture Radar (SAR) is the most extensively employed active microwave configuration for imaging 

purposes. Despite weather conditions, SAR systems offer high-resolution images suitable for day and night operations. 

These systems can achieve resolutions in the tens of meters range, covering swath widths up to 500 kilometres, with the 

best performance observed in space-based systems. SAR technology is widely applied in geoscience, climate change 

research, 2-D and 3-D mapping, and even 4-D mapping. The estimation of soil moisture has been facilitated by the 

utilization of various SAR satellites, including the European Remote Sensing (ERS) [42], the Environmental 

Satellite/Advanced SAR (ENVISAT/ASAR)[43], the RADARSAT [44], the Advanced Land Observing Satellite/Phased 

Array L-band SAR(ALOS/PALSAR) [45] and the Terra SAR-X platforms [46].  

 

3.7. Soil Organic Carbon (SOC) 

 

The colour of the soil serves as an initial indicator for estimating the levels of soil SOC. Soils with darker hues tend to 

contain higher quantities of SOM. As a result, the assessment of SOM using imaging spectroscopy proves to be an excellent 

approach, given its strong correlation with soil colour [8]. VIS-NIR spectroscopy is a valuable method that enables the 

estimation of soil's physical, chemical, and biological properties based on its reflectance characteristics. Notably, the SWIR 

(1300-2500nm) and NIR (700-1300nm) regions have been identified as particularly sensitive to SOC levels, with 

reflectance decreasing as SOC content increases [47]. 

The endeavor to map SOC has been facilitated by the implementation of sensors, such as the Sentinel series, which have 

strategically integrated bands that are capable of detecting SOC [6]. The European Space Agency's (ESA) Sentinel-3 Ocean 

and Land Colour Instrument (OLCI) is a cutting-edge technology that has recently joined the Sentinel series. With an 

extended sweep width of 1270km, the Sentinel-3 can collect data within the electromagnetic spectrum's VIS to NIR 

wavelength range, specifically from 400 to 1020nm. These VIS-NIR wavelengths are pivotal in offering reflectance 

information on SOC and are widely acknowledged as the most sensitive region for accurately assessing SOC 

concentrations [48]. 

A diverse set of multivariate statistical techniques and ML algorithms have been employed to map SOC. The Principal 

Component Analysis [49], Regression Trees [50], Support Vector Machines [51]; [52], and Partial Least Squares 

Regression [53], are commonly found in the relevant literature for SOC estimations. 
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Two methods can be used to identify soil salinity: direct detection on exposed soil using remotely sensed data or indirect 

detection through the analysis of vegetation type, which is influenced by the presence of salts in the soil.  

Salt mineralogy determines concentrations of salt through identified absorption bands in the electromagnetic spectrum 

[54]. Spectral regions that identify soil salinity levels include the visible (0.55–0.77Am), near-infrared (0.9–1.3Am), and 

middle-infrared (1.94–2.15, 2.15–2.3, 2.33–2.4Am) bands. Six RS indices (Table 6) can be computed to assess salinity, 

which can then be used to map areas with salt-affected soils. 

 
Table 6. Indices to analyze soil salinity and vegetation indices using Landsat 4-7 sensors [11]. 

Index name Formula 

Salinity Index (SI) √𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑4 

Brightness Index (BI) √𝐵𝑎𝑛𝑑32 ∗ 𝐵𝑎𝑛𝑑42 

Normalized Difference Salinity Index (NDSI) 
𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4
 

Vegetation Soil Salinity Index (VSSI) 2 ∗ 𝐵𝑎𝑛𝑑2 − 5 ∗ (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4) 

Normalized Differential Vegetation Index (NDVI) 
(𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑3)

(𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3)
 

Soil Adjusted Vegetation Index (SAVI) (
(𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑3)

(𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3 + 0.5)
) ∗ 1.5 

 

The application of RS is not exempt from difficulties, as the ever-changing process of surface salinity can lead to 

inaccuracies in identification outcomes. Salt detection may be impeded by vegetation or other surface attributes, causing 

spectral confusion with salt reflectance. Using space-borne SAR systems represents an approach to mapping areas 

impacted by salinization. RADARSAT images [55] and Phased Array Type L–L-Band synthetic Aperture Radar 

(PALSAR) data [56] are commonly employed in the estimation of soil salinity. The justification for employing microwave 

RS to analyze the salinity factor is rooted in the dielectric characteristics of the soil, as salinity plays a crucial role in 

electric conductivity. Building upon this rationale, the ML regression model emerges as a primary method for addressing 

soil salinity, while the random forest (RF) models are frequently employed in ensemble learning approaches [57]. 

 

3.9. Iron Content 

 

Employing multispectral or imaging spectrometer images, it becomes feasible to measure the absorption features related 

to iron oxide and iron hydroxides [8]. Iron exhibits three wide diagnostic absorption bands in the VIS/NIR in its trivalent 

state. These bands can be the main constituents (in iron oxides) or impurities (in iron smectites). In the case of hematite, 

these absorption bands are located at 550nm, 630nm, and 860nm, while for goethite, they occur at 480nm, 650nm, and 

920nm. The reflectance spectra are predominantly influenced by the first absorption band (Fe-VIS:~500nm), and the third 

absorption band (Fe-NIR:~900nm) dominate the reflectance spectra [13].  

A method to generate the redness index for Hematite content, derived from Thematic Mapper of Landsat, is the following 

formula: Redness Index (RI) = R2/(B*G3), while from Sentinel-2 general formulas to assess Ferric Oxides and Ferrous 

Iron is the B11(1600:1700)/ B08(760:860); and B12(2145:2185)/B08/ (760:860) +B03(520:600)/ B04(630:690) 

respectively. 

 

4. CONCLUSIONS 
 

The integration of technologies related to the collection and analysis of spatial data, such as G.I.S., has made it easier to 

access and use information and data from different origins and enhance the continuous investigations of spatial data 

towards a detailed understanding and creation of any thematic map. Despite the benefits obtained through DSM, 

conventional map strategies will continue to be vital as they gather highly detailed information about mapping units. 

Nonetheless, those conventional techniques are vulnerable to substantial temporal intervals between the fieldwork, sample 

retrieval, the determination of mapping limits, and ultimately, the disclosure of the conclusions [59].  

RS and PS methods, among others, aim to overcome these obstacles and establish the groundwork for generating and 

delineating soil. Existing findings in academic literature demonstrate that combining G.I.S. technologies with RS/PS and 

ancillary data is a highly effective tool for soil science. 

In a continuous long-term effort to improve our understanding of soil processes through RS and PS, advances are also 

deemed necessary to develop the geostatistical analysis using these data entirely. Historically, our knowledge of soil and 
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evaluation of its quality and functions has been significant. Further developing our analytical approaches and modelling 

techniques is crucial to achieving a detailed and accurate understanding of a complete system and a resource. Thus, we 

will achieve a more efficient use and preserve it sustainably for future generations. 
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