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ABSTRACT   

The development of adaptive forest ecosystem management strategies presumes the existence of aboveground biomass 

estimates at different spatial scales. In recent years, a series of remote sensing technologies have been developed, providing 

timely, low-cost, and reliable estimates on biomass and other forest attributes, especially over large and/or remote areas. 

Among the various technologies, Light Detection and Ranging (LiDAR) employed on aerial, satellite, and even ground 

platforms typically offer accurate forest biomass estimates. This is due to the ability of the emitted pulses to penetrate the 

forest canopy, thereby providing 3D information about all forest vegetation layers. While ground-based and aerial LiDAR 

provide a more detailed characterization of the vertical structure of vegetation compared to satellite-based LiDAR, the 

latter offers obvious advantages in terms of cost-effectiveness. This study aimed to investigate the potential of LiDAR 

GEDI (Global Environmental Dynamics Investigation) satellite data to reliably estimate the biomass of stem, bark, 

branches, and needles at the GEDI footprint level, which are the constituent components of forest aboveground biomass. 

The study area consists of a dense fir forest characterized by complex structure and intense topography. A regression 

analysis with the random forest (RF) algorithm was performed to develop prediction models for all parts of the 

aboveground forest biomass using height and crown profile metrics. Accordingly, five random forest models were created 

and evaluated for their predictive performance using an independent validation sample. In addition, the influence of forest 

biomass density and topography on the estimates was examined. The results reveal that the biomass of crown parts can be 

estimated with satisfactory accuracy and an increase of almost 15% in accuracy was observed in areas with gentle slopes 

and topography. Overall, GEDI data can be used to estimate forest biomass and its key parts in large extents with mild 

topography, regardless of the aboveground biomass density.  

Keywords: Forest biomass, LiDAR, GEDI, regression analysis 

 

1. INTRODUCTION  

Forest biomass assessment is a key tool for carbon stock accounting and mitigating the impacts of climate change on 

ecosystems [1]. It has been estimated that forests globally absorb twice as much carbon as is released by deforestation and 

other disturbances [2]. Therefore, longitudinal monitoring and inventory of global biomass and carbon stocks is a 

prerequisite for understanding the global carbon cycle. 

Forest biomass can be distinguished into aboveground (trunk, branches, leaves, bark) and belowground (root system) 

biomass, with aboveground (AGB) biomass being the primary focus of the research community, mainly due to the 

difficulty of collecting and sampling belowground biomass [3]. Biomass estimation methods can be divided into direct and 

indirect methods, with destructive sampling (direct) having the highest accuracy [4]. However, these procedures are quite 

time-consuming, and demanding, and have very high implementation cost [5]. The most widespread method of biomass 

estimation is the use of allometric equations, which are based on destructive sampling of a statistically significant number 

of trees and recording their basic structural parameters, such as breast height diameter (DBH) and tree height [6], [7]. 

Remote sensing technologies can provide accurate forest biomass estimates at large scales, based primarily on active and 

passive sensors [8]. The use of optical data derived from passive sensors is the most common approach to forest biomass 

estimation, although high saturation is observed in regions with high biomass density [9], [10]. Synthetic aperture radar 

(SAR) data have been exploited in several applications involving forest biomass [11], [12], [13], [14], [15] also present 

significant limitations, including saturation, high acquisition costs, and complex processing methods [16]. The use of 

LiDAR data has been proven to be the most accurate approach for forest biomass estimation, providing 3D visualizations 
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of forest structure and biophysical characteristics [17]. LiDAR data, depending on the acquisition platform, can be divided 

into aerial, ground-based and satellite-based. 

Although ground-based and aerial LiDAR provide a better characterization of the vertical structure of vegetation than 

satellite-based ones, the latter has obvious advantages in terms of cost-effectiveness. Several recent studies have found that 

satellite LiDAR data can offer reliable estimates of forest parameters such as height [18], [19], forest fuels [20], and 

biomass [21], [22], [23], even on a global scale. Historically, the GLAS (Geoscience Laser Altimeter System) mission was 

the first attempt to record space-based laser observations of the Earth's surface. Healey et al. (2012) used the measurements 

from this sensor to estimate AGB in the California region, comparing the results of the derived model to those of the forest 

inventory. While the estimation errors were quite high, their cost was overwhelmingly lower than that of the forest 

inventory measurements, highlighting the importance of space-based data in capturing AGB at large scales [24]. In 2018, 

the launch of the GEDI (Global Environmental Dynamics Investigation) sensor marked the beginning of a new era in 

biomass observation at the global level, as it promises the possibility of estimating AGB and crown height at large scales 

[25].  

The GEDI sensor is a full-waveform LiDAR system installed on the International Space Station, which provides billions 

of observations of the vertical vegetation structure in temperate and tropical ecosystems [26]. The generated data were 

used to extract information such as canopy height, leaf area index (LAI), soil topography and AGB. In addition, the sensor’s 

observations are used to create predictive ecosystem models by fusing other types of remote sensing data [26]. In recent 

years, a plethora of studies have examined the feasibility of estimating forest biomass using GEDI data [21], [27], [28], 

[29], [30], [31], [32]. More specifically, Chen et al. (2022) examined the feasibility of combining GEDI and ICEsat-2 data 

with ALOS-2, Sentinel-1, Sentinel-2, and ALOS-1 data to estimate forest biomass in a heterogeneous mountainous forest. 

The feasibility of estimating AGB and crown height in a typical Mediterranean forest with GEDI data was examined by 

Dorado-Roda et al. (2021), highlighting the influence of forest structure on biomass estimates. Ni et al. (2021) focused on 

the importance of slope-adapted metrics for forest biomass estimation in areas with high relief, as the sensor’s signal is 

significantly affected. Also, Duncanson et al. (2021) utilized the GEDI relative height metrics for biomass estimates in a 

conifer forest, which were compared with those of the ICEsat-2 sensor. Finally, Kellner et al. (2023) developed the product 

GEDI04_A, which is the AGB density at a global scale. This product was based on the GEDI02_A data and a series of 

linear models to estimate forest biomass density at the global scale. However, all these estimates have low accuracy in 

estimating crown height and biomass, as they are significantly affected by land cover and pulse sensitivity [34]. 

Most of the aforementioned studies are based on combining data from different sensors to evaluate the accuracy of the 

estimates provided by GEDI data [32, p. 202]. To the best of our knowledge, no other study has tried to estimate the 

constituent parts of AGB, such as biomass of stem, branches (live and dead), leaves, and bark, which are relevant to 

adapting the forest management practices and for deriving economic metrics. To address this gap, this paper aims to 

investigate the potential of GEDI data to reliably estimate the AGB of forest components (live and dead branches, stem, 

bark, and needles) in a complex-structured coniferous forest with intense topography. Reference data were obtained from 

the results of a previous study, which combined aerial LiDAR data with field measurements to estimate the components’ 

biomass at the sampling plot level. The GEDI data are exploited to estimate the biomass of the components using a Random 

Forest (RF) regressor. Finally, the influence of biomass density and topography on the accuracy of forest biomass estimates 

is examined. 

2. MATERIALS AND METHODS 

2.1 Study area 

 

This research was undertaken in the University Forest of Pertouli (     Figure 1), which is located in the eastern side of the 

mountain range Pindus, in the Prefecture of Trikala, Thessaly (latitude 39° 32' N – 39° 35' N, longitude 21° 33' E – 21° 38' 

E). The forest is owned by the Greek State that has granted the land to the Aristotle University of Thessaloniki, which has 

been managing the forest since 1934, aiming to support research and educational purposes. It covers almost 3,300 ha and 

the altitude ranges from 900 to 2050 m, with an average of 1350 m. Most of the total area (73%) is covered by forested or 

partially forested areas, 20% by grassland, and the remaining percentage by barren and other areas. The climate is 

characterized as transitional, combining elements of the Mediterranean and Mid-European climate. The topography of the 

area plays a decisive role in shaping the climate with an uneven distribution of precipitation throughout the year. 
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     Figure 1. Map of the study area, including the GEDI plots that were valid for biomass estimation. 

2.2 Airborne LiDAR data 

 

Airborne LiDAR data were collected in October 2018 at the University Forest of Pertouli, using a RIEGL VQ-1560i-DW 

multispectral LiDAR sensor. The data comprised information derived from two spectral channels, Green and Near Infrared 

(NIR) (532 nm and 1064 nm respectively). Prior to data delivery, the vendor (GEOSYSTEMS HELLAS S.A.) performed 

pre-processing of the LiDAR data, including the conversion of all full waveform information (19 pulses/m2) into discrete 

returns. The point cloud density for both channels was nearly identical (44.65 points/m2 for Near Infrared and 44.85 

points/m2 for Green), with a nominal inter-pulse spacing of 0.15 m and 0.18 m respectively, with up to seven returns per 

pulse and a scan angle range of −32° to +32°.  

2.3 Spaceborne LiDAR data 

 

The data of the GEDI satellite system were used for the basic AGB components estimation in the Pertouli University 

Forest. The data were acquired through the rGEDI library [35], using the outer boundaries of the study area to search all 

available data from 2019-2020. A total of 19 strips of the GEDI02_A and GEDI02_B products were acquired. The 

GEDI02_A products are georeferenced height metrics derived from the analysis of the full waveform data. The process 

for generating the GEDI02_A product datasets is adapted from the Land, Vegetation, and Ice Sensor (LVIS) algorithm. 

The specific product is provided in HDF5 format and has a spatial resolution of 25 m. These data provide 156 layers for 

each bundle, including ground elevation, canopy height, energy, and several other interpreted metrics from the waveform 

data. The GEDI02_B data provide metrics such as land cover, plant area index (PAI), plant area volume density (PAVD), 

and foliage height diversity (FHD). Finally, the erroneous measurements of the sensor (e.g. height greater than 1 km, 

Quality Flag) were removed and the dataset was cropped to the area of interest for the estimation of fir biomass components 

in the Pertouli University Forest. 

2.4 Methods 
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Figure 2 presents the methodology developed for estimating AGB forest biomass components using the GEDI satellite 

data. The following subsections detail the steps for processing and analyzing LIDAR data (GEDI and aerial) to estimate 

the basic forest biomass components in a forest with complex structure and topography. 

 

Figure 2. Flowchart of the workflow for the AGB components estimation using spaceborne laser data (GEDI) in a multi-

layered coniferous forest with complex topography. 

2.4.1 Spaceborne LiDAR data 

 

The GEDI instrument has three lasers, two of which are full power and the other is split into two coverage beams, producing 

a total of four power beams and four coverage paths. The tracks have an average diameter of approximately 25 m and are 

spaced approximately 60 m apart along the track. 

In this paper, GEDI02_A and GEDI02_B data, obtained for the period 2019-2020, were exploited. The obtained data were 

checked for validity and pulses that according to the Quality_Flag and Degrade_Flag fields were considered to be of lower 

quality were removed [36]. In addition, pulses that exhibited extreme height values were removed (height greater than 40 

meters), as these values would significantly affect the estimates. Finally, only data taken during the evening hours was 

considered; however, the amount of data was drastically reduced, compromising the reliability of the results. Consequently, 

out of a total of 1,900 pulses covering the Pertouli University Forest, only 342 pulses were used, as only these pulses met 

the above criteria. 

The GEDI02_A data provide relative height (RH) measurements, from 0 to 100% of the height in 1% increments. Although 

several studies examining forest biomass estimation use only selected height metrics [37], [38], in this study, the full set 

of height metrics was employed to estimate aboveground biomass. The GEDI02_B data include metrics related to crown 

profile such as plant surface area index (PAI) and vertical plant surface area volume density (PAVD) profile (Table 1). 

Table 1. Summary of the GEDI-derived metrics used for the biomass components estimation. The metrics were extracted from 

two different products, GEDI02_A and GEDI02_B. 

Product Predictors Description 

GEDI02_A rh0,rh1,…..rh100 Relative height 
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GEDI02_B 

height_bin 

Height of the first beam 

pgap_theta_z relative to the 

ground 

pavd_z0_5m,……. 

pavd_z140_145m 

Vertical Plant Area Volume 

Density profile with a vertical 

step size of dZ 

pai_z0_5m,……. pai_z145m 

Vertical PAI profile from canopy 

height (z) to ground (z=0) with a 

vertical step size of dZ, where 

cover(z > z_max) = 0 

 

2.4.2 Airborne LiDAR data 

 

In this work, the aerial LiDAR data and biomass estimation models were produced by Georgopoulos et al. (2021) and 

Georgopoulos et al. (2023). The analysis was performed using the R software, and more specifically the lidR package [41], 

[42].  

Initially, the footprints of the GEDI dataset were used to clip the point cloud to produce the height and intensity metrics of 

the airborne LiDAR data. The point cloud, split into the green and NIR channels, was cropped to the regions of interest 

and used for further processing. Since the generated biomass estimation models utilize height and intensity metrics, it is 

considered necessary to normalize the intensity of the point cloud. Therefore, the airborne LiDAR point clouds were 

separated into single and first returns to normalize the intensity, as intermediate returns were excluded from the process 

[43]. After intensity normalization, point cloud reconstruction was performed to derive the height and intensity metrics for 

estimating the biomass of the AGB components at the tree level. 

The normalized point cloud was further processed to remove erroneous measurements and classified into ground and non-

ground points using the Cloth Simulation algorithm [44]. Next, the point cloud height was normalized and the crown height 

model was generated for the tree segmentation. In this study, the Watershed algorithm was used for the crown delineation 

process as it provides accurate results of tree crown partitioning. Then, the essential metrics were calculated for each 

segmented tree in order to generate the reference AGB (Table 2). 

Table 2. Summary of the airborne LiDAR-derived metrics extracted for the tree components biomass estimations, in order to 

create the reference dataset. 

LiDAR metrics Description 

p10, p20…. p95, p99 Height percentiles 

b10, b20… b95, b99 Height bincentiles 

max Max height 

avg Average height 

std Height standard deviation 

int_p10, int_p20…. int_p99 Intensity percentiles  

int_std Intensity standard deviation  

int_avg Average intensity 

int_skew  Intensity skewness 

 

The estimated biomass for each of the forest biomass components (branches, dead branches, stem, bark and needles) was 

first estimated at the tree level and then aggregated at the GEDI footprint level, which represents the GEDI footprint radius 

(Table 3). Finally, for each footprint, the mean slope was calculated in order to investigate the effect of topography on 

forest biomass estimation using GEDI data. 
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Table 3. Reference biomass metrics for each AGB component using the Airborne LiDAR data. 

 

 

 

 

 

 

 

 

 

2.4.3 Random forest regression algorithm and accuracy assessment  

 

The random forest (RF) algorithm was used to estimate forest biomass components using GEDI data. The biomass parts 

estimated were the stem, bark, dead branches, branches, and needles. The RF algorithm is a widely used machine-learning 

technique based on decision trees to solve classification and regression problems [45], [46]. This algorithm was chosen as 

several studies have highlighted its ability to provide reliable forest biomass estimates in different types of ecosystems 

[31]. To obtain unbiased estimates of the models’ accuracy, a repeated runs cross-validation approach was followed for 

each model trained (one for each tree component). More specifically, ten independent repetitions were performed, each 

time randomly splitting the data into training (70%) and test (30%) data. In each of these ten repetitions, an internal 3-fold 

cross-validation is performed on the respective training set to determine the model’s hyperparameters [47]. The model 

hyperparameters that were optimized were the number of trees to be grown (50 to 500 with a step of 50) and the number 

of independent variables per tree. The performance of each model is ultimately evaluated based on mean absolute error 

(MAE), bias, coefficient of determination (R2), and relative root mean square error (RMSE) on the testing sets, averaged 

over the ten repetitions. 

3. RESULTS 

 

3.1 Biomass estimation using spaceborne LiDAR data 

 

The first experiment considers all available GEDI footprints, without differentiating them over any topographic or other 

feature. The performance of the models for estimating AGB fractions using GEDI satellite data is presented in Table 4. 

This table reports the mean, minimum, and maximum values of the evaluation metrics over the ten independent runs for 

each biomass estimation model. All estimation models exhibit a weak correlation between reference and estimated 

biomass, with R2 values ranging between 0.36 and 0.4, except the one for the bark biomass estimation, which exhibits even 

lower performance.  

More specifically, the RF model for branch biomass estimation provided the best results compared to all other models, 

achieving mean values of R2 at 0.40, MAE at 566.20 kg, rbias at -0.16, and RMSE% at 37.42%. The foliage biomass 

estimation model provided similar results to that of the branches, with slightly decreased R2 (0.39), slightly increased 

RMSE% (37.63%), and rbias (-0.19). Regarding the dead branches model, the metrics revealed a relatively small RMSE% 

(31.19%) and almost similar R2 (0.38) to the aforementioned models. However, the trunk and bark models showed the 

lowest predictive ability. More specifically, the trunk model shows a slightly reduced R2 (0.36) and rbias (-0.10) compared 

to the other models, however, a highly reduced RMSE% (27.76%) is observed. More specifically, the trunk model showed 

a slightly reduced R2 (0.36) and rbias (-0.10) compared to the other models, but an extremely reduced RMSE% (27.76%) 

is observed. Similar to the trunk model, the bark model showed the lowest RMSE% and rbias (22.23% and -0.05), in 

contrast to the worst performance in terms of R2 (0.12). 

 
Table 4. Testing performance of the RF algorithm of the AGB components. The AVG, MAX, MIN, and STD_STATS 

represent, respectively, the average, maximum, minimum, and standard deviation over the ten independent runs. 

Biomass 

Component 
Statistics MAE Bias Bias% RMSE RMSE% R2 

Biomass (n=342) Mean (kg) Minimum (kg) Maximum (kg) 

Stem 16839.84 5610.76 40899.52 

Dead Branches 219.69 43.11 538.86 

Branches 1976.80 245.17 5673.46 

Needles 1187.56 147.07 3557.94 

Bark 528.34 170.564 1340.73 
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Stem 

AVG_STATS 1659.17 -60.44 -0.10 2104.21 27.76 0.36 

MAX_STATS 1834.15 240.79 -0.06 2329.62 30.67 0.46 

MIN_STATS 1531.11 -337.78 -0.14 1820.39 23.64 0.21 

STD_STATS 114.30 159.15 0.03 180.69 2.41 0.08 

Foliage 

AVG_STATS 339.66 -18.87 -0.19 442.95 37.63 0.39 

MAX_STATS 370.41 10.18 -0.13 491.59 40.98 0.49 

MIN_STATS 312.54 -53.18 -0.27 399.75 33.87 0.30 

STD_STATS 19.26 23.74 0.05 28.98 2.43 0.06 

Dead 

Branches 

AVG_STATS 52.73 -1.82 -0.12 67.81 31.19 0.38 

MAX_STATS 57.52 6.50 -0.08 73.76 33.62 0.46 

MIN_STATS 48.78 -10.63 -0.18 60.91 27.45 0.28 

STD_STATS 2.98 5.46 0.04 4.40 2.17 0.06 

Branches 

AVG_STATS 566.20 35.88 -0.16 744.30 37.42 0.40 

MAX_STATS 645.06 162.14 -0.07 820.20 41.70 0.47 

MIN_STATS 526.25 -104.68 -0.27 693.83 34.93 0.32 

STD_STATS 39.66 85.61 0.07 42.07 2.00 0.05 

Bark 

AVG_STATS 89.61 -1.23 -0.05 116.52 22.23 0.12 

MAX_STATS 99.84 13.24 -0.01 138.27 26.60 0.30 

MIN_STATS 78.58 -24.74 -0.09 100.51 19.01 0.02 

STD_STATS 7.41 11.50 0.02 12.30 2.29 0.09 

 

The results above indicate that there are rather weak correlations between the estimated and reference biomass values when 

considering all available GEDI footprints. Hence, we tried to investigate the influence of two parameters that could 

theoretically affect the results: biomass density, since the penetration is the LiDAR signal is theoretically expected to 

decrease in denser forested areas, and slope, which severely affects the signal. 

 

3.2 Effects of biomass density and topography on biomass estimation  

 

To investigate the influence of biomass density, the available GEDI footprints were classified into three different biomass 

densities (Low, Medium, and High), where Low refers to plots with biomass less than 8626 kg/footprint (0-25%), Medium 

from 8,626 to 11,950 kg/footprint (25-75%), and High greater than 11,950 kg/footprint (75-100%). Accordingly, a different 

model was trained for each biomass category and tree component, performing ten independent runs in each case, with a 

70%–30% split for training and testing data, respectively, as done in the previous experiment. Table 5 reports the 

performance metrics obtained, similarly to the representation of Table 4. 

Table 5. Testing performance of the RF algorithm of the AGB components for each biomass density class (i.e., Low, Medium, 

and High). The reported metrics represent the average value from the 10 iterations for every biomass component and biomass 

density. 

Biomass 

Component 

Biomass 

Density 
MAE Bias Bias% RMSE RMSE% R2 

Stem 
Low 713.68 -46.13 -0.07 909.72 20.96 0.12 

Medium 880.01 116.75 0.00 1050.91 13.68 0.07 
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High 1158.37 -144.05 -0.03 1524.77 13.83 0.06 

Foliage 

Low 120.36 -4.19 -0.12 151.38 27.99 0.19 

Medium 177.05 9.66 -0.03 222.42 19.17 0.18 

High 300.13 20.78 -0.03 405.26 21.07 0.16 

Dead 

Branches 

Low 20.43 -1.33 -0.08 25.37 22.14 0.17 

Medium 27.85 2.16 -0.01 33.97 15.59 0.10 

High 41.64 -0.43 -0.02 54.31 16.34 0.09 

Branches 

Low 203.81 -10.06 -0.12 259.49 28.49 0.20 

Medium 287.21 14.26 -0.03 361.88 18.62 0.18 

High 472.32 22.06 -0.03 628.23 19.89 0.16 

Bark 

Low 33.56 -4.30 -0.96 42.49 25.01 0.11 

Medium 43.98 6.89 -0.01 54.22 19.84 0.11 

High 70.85 -4.22 -0.16 88.40 32.55 0.08 

 

Low biomass areas (<8,651 kg/area) show the highest metrics in all biomass categories, with branches having the highest 

R2 (0.20) and RMSE% (28.49%). The needle and dead branches biomass estimation models performed marginally lower 

on the low biomass density surfaces, with R2 at 0.20 and 0.17 and RMSE% at 27.99% and 22.14% respectively. In the 

medium and high biomass density plots, lower accuracies were observed in all forest biomass parts, with the branch and 

needle models showing the highest performance among the others. Finally, the bark and stem models showed the lowest 

predictive ability across all biomass densities. However, it is worth noting that RMSE% decreased significantly in all 

models at medium and high biomass densities, except for the bark model. 

To investigate the influence of topography, the available GEDI plots were split into two categories based on the footprint’s 

average slope:  low slope / gentle topography (inclinations 0–15%) and medium or high slope (inclinations above 15%). 

Unlike forest biomass density, slopes significantly affected the accuracy of all model estimates (Table 6). All but the bark 

estimation model exhibited much higher accuracy in areas with low slopes and gentle topography (0-15% slope). Similarly 

to the previous experiments, the crown parts (foliage and branches) provided the best estimations. More specifically, the 

branch model showed the highest R2 (0.47) and satisfactory RMSE% (32.77%) in low-slope regions. The models of live 

and dead branches showed marginally lower R2 (0.46 and 0.44 respectively), with the latter showing a rather low—or at 

least much lower than the previous experiments—RMSE% (28.00%). Stem biomass can be estimated with satisfactory 

accuracy (R2 = 0.42) and a rather low RMSE% (24.62%), in contrast to the previous cases, where this biomass category 

could not be estimated with high confidence. Finally, the bark biomass model showed the lowest predictive performance, 

with R2 = 0.15 in low and R2 = 0.08 in medium gradients, similarly to the previous cases. 

Table 6. Testing performance of the RF algorithm of the AGB components for each slope category (i.e., Low and Medium). 

The reported metrics represent the average value from the 10 iterations for every biomass component and biomass density. 

Biomass 

Component 
Slope Category MAE Bias Bias% RMSE RMSE% R2 

Stem 
Low (0-15%) 1512.05 147.46 -0.04 1905.50 24.62 0.42 

Medium (>16%) 2230.95 138.11 -0.21 2677.08 35.17 0.13 

Foliage 
Low (0-15%) 319.44 22.21 -0.11 410.93 34.15 0.46 

Medium (>16%) 449.33 -44.50 -0.41 539.67 46.53 0.20 

Low (0-15%) 48.98 3.65 -0.06 62.18 28.00 0.44 
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Dead 

branches 
Medium (>16%) 70.68 -3.85 -0.26 84.59 39.35 0.16 

Branches 
Low (0-15%) 516.32 41.34 -0.10 657.27 32.77 0.47 

Medium (>16%) 733.42 -60.06 -0.40 890.10 45.93 0.20 

Bark 
Low (0-15%) 14.91 0.82 -0.06 21.43 31.32 0.15 

Medium (>16%) 70.84 -4.20 -0.15 88.40 32.54 0.08 

 
 

4. DISCUSSION 

This study focuses on the potential of GEDI LiDAR satellite data combined with the random forest (RF) algorithm to 

estimate forest biomass components in a coniferous forest. Airborne LiDAR data were used to generate reference data 

through the utilization of the stem, bark, branches (live and dead), and needle biomass estimation techniques. The generated 

data were used to investigate the ability of the GEDI L2A and L2B satellite data to provide reliable biomass estimates 

through the utilization of height metrics, plant surface profiles, and vertical plant surface volume density profiles. In 

addition, the RF algorithm was selected for biomass estimation, as it is a fairly widespread algorithm that provides accurate 

forest biomass estimates. In addition to the basic estimates, the ability of the GEDI data to provide biomass estimates in 

areas with high biomass density and complex topography was examined. 

The first and key part of the analysis involves removing GEDI measurements that are identified as erroneous and of low 

quality, in order to retain only the high-quality data. Therefore, the 'Quality_Flag' and 'Degrade_Flag' fields were used to 

remove measurements with low quality and positional errors, and elevation measurements with extremely high values 

exceeding 45 m in height were removed (Hoffrén et al, 2023). Furthermore, it was observed that a multitude of “rh” field 

values (rh_1 to rh_10) had negative height values, which occurs mainly in areas with low land cover (Di Tommaso et al., 

2021).  

In the case of crown biomass (dead and live branches, needles), the RF model using GEDI metrics provided higher 

estimation accuracies compared to those of the trunk. More specifically, branch biomass was estimated with the highest 

accuracy (R2=0.40, MAE=566.20 kg, rbias=-0.16 and RMSE%=37.42%), with the estimation accuracies of needles and 

dead branches lagging slightly behind. The difference in accuracy between the trunk and canopy parts may be due to direct 

contact of the signal with the surface of branches and needles [32]. The diameter at breast height and therefore the biomass 

of the trunk parts is not proportional to the crown area, especially in Abies borisii-regis. Stem biomass can be estimated 

with reasonable accuracy compared to that of the bark, however, given the importance of this part of biomass in forest 

management, the accuracy of the results is considered insufficient. 

To improve the above results and find the main factors influencing the estimates, the GEDI measurements were categorized 

by biomass density and slope. The above categorization was chosen based on the literature, as biomass density and slope 

significantly affect the GEDI signal [27], [31]. Therefore, three different classes of biomass density (Low < 8,626 

kg/footprint, Medium from 8,626 to 11,950 kg/footprint, and High > 11,950 kg/footprint) and two classes of slopes (low 

< 15% and medium to steep slopes >16%) were created. Accordingly, the ability of GEDI satellite data to provide reliable 

biomass estimates in areas with different biomass densities was examined. Results showed that areas with low biomass 

density provide more accurate estimates in all forest biomass components, with the highest performance observed at the 

branch biomass (R2 = 0.20 and RMSE% = 28.49%). It is worth noting that results in all density classes are significantly 

lower than the overall results. The large difference in the accuracy of the estimates may be due to the large deviation of 

the estimated GEDI heights from reality, leading to large variations [48]. Regarding the topography, the results showed 

the significant influence of slope on the accuracy of the estimates. Areas with mild topography and slopes of up to 15% 

showed significantly higher results than areas with medium to steep slopes (>16%). More specifically, all major 

components of forest biomass were estimated with satisfactory accuracy, with branch biomass providing the highest 

estimation accuracy R2 (0.47) and RMSE% (32.77 %). Stem biomass on gently sloping surfaces was estimated with 

satisfactory R2 (0.42) accuracy, presenting the smallest estimation error with RMSE% (32.77 %). These results are in 

agreement with previous studies highlighting the significant effect of slope on estimates of woody volume, height, and 

forest biomass, especially in areas with slopes greater than 10% [31], [48], [49]. 
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Although the GEDI sensor is a quite widespread tool for estimating forest biomass, no study to the best of our knowledge 

has examined the accuracy of estimating the key parts (stem, bark, dead and live branches, needles) of forest AGB. Hence, 

any comparisons with previous findings can only done in rather vague terms, e.g., via the approximate ranges of the 

reported R2 or RMSE% values for total AGB or timber volume, keeping in mind that the uncertainties of total AGB 

estimations are not necessarily directly comparable with AGB components estimations. Fayad et al. (2021) used GEDI 

data to estimate height and woody volume in eucalyptus plantations, showing much higher volume estimation accuracies 

than the present study, with R2 exceeding 0.75 across all slope categories. However, the reported RMSE% values were 

higher, ranging from 26.78 to 48.63%. These results agree with those of the present study, in terms of the influence of 

topography on the accuracy of the estimates. It is also worth noting that the significant difference observed between the 

two studies in R2 is due to the different ecosystem types, as one considers a eucalyptus plantation and the present one 

considers a multilayered naturally regenerated fir forest. Sun et al. (2022) evaluated the ability of GEDI data to provide 

reliable measurements of crown height, vertical structure, and AGB in tropical and temperate forests, showing very high 

estimation accuracy (R2=0.82). However, the reported statistics refer to training rather than testing accuracy (i.e., they are 

the results of linear regression correlation analysis rather than the results of a predictive model), in which the results are 

expected to be much lower. The effect of slope and topography on forest biomass estimation in mountainous forests was 

examined by Ni et al. (2021) who showed similar results to the present work, with R2=0.48, which was significantly 

improved by using geometrically corrected data. Finally, Xu et al. (2023) estimated oak biomass using GEDI data, showing 

higher results than the present study. Variables extracted from MODIS, such as modis_treecover, are also used, which 

significantly increases the estimation accuracy. 

This research highlights the ability of GEDI data to provide forest biomass estimates with moderate accuracy in a 

multilayered fir forest with intense topography. A key limitation is the lack of a sufficient number of GEDI measurements 

in the study area due to the unsuitability of a large percentage of observations. Also, this study did not use any form of 

GEDI data clearing based on aerial LiDAR data, comparing digital crown model values and estimated GEDI heights. This 

action may significantly increase the accuracy of the estimates but would possibly provide a false picture of the GEDI’s 

data true ability to estimate forest biomass. In summary, this study demonstrates that GEDI data are capable of providing 

satisfactory forest biomass estimates in a coniferous forest canopy with relatively low errors. This research highlights the 

importance of using GEDI data for aboveground forest biomass estimates in coniferous forests, providing estimates for 

large areas and less accessible areas. In addition, these estimates provide an economical solution for estimating forest 

biomass at large scales where field measurements and other remote sensing data are quite costly. Finally, this study is the 

first contribution to the framework for using GEDI data to estimate the key parts of the aboveground forest biomass using 

aerial LiDAR estimates as reference data, examining the influence of forest biomass density and topography on the 

estimates. 

5. CONCLUSIONS 

This study aimed to estimate the biomass of the main parts of the AGB using LiDAR satellite data in a coniferous forest. 

Specifically, GEDI sensor data were utilized to estimate the biomass of stem, bark, branches (live and dead), and needles 

using the RF machine learning regression algorithm. The results showed that LiDAR satellite data can provide satisfactory 

biomass estimates in a conifer forest in low-slope, low-relief areas with gentle topography. More specifically: 

• The crown biomass (live and dead branches, needles) can be estimated with satisfactory accuracy and relatively 

low errors using the RF algorithm. 

• Bark and trunk biomasses lag significantly in estimation accuracy compared to crown but exhibit lower estimation 

errors.  

• Forest biomass density did not affect the accuracy of the estimates, as in all biomass density classes the accuracy 

of the estimates was too low. 

• Slope and topography significantly affect biomass estimates, as the GEDI signal has several errors in height 

metrics at slopes greater than 16%. 

• The models estimating all forest biomass parts have relatively low accuracy but could be used to study the 

distribution of forest biomass at the national level. 

Overall, it is evident that LiDAR satellites could successfully contribute to the quantification of forest biomass and carbon 

stocks in a variety of forest ecosystems. This study contributes to the improvement of forest biomass estimates and a better 
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understanding of the behaviour of satellite LiDAR data in natural ecosystems. Given the limitations of the study described 

in the previous section, it would be interesting to explore the potential of LiDAR satellite data in biomass estimation at the 

national level, analysing different vegetation types and large numbers of GEDI measurements. Finally, future research 

could also focus on the combined use of space-based and airborne LiDAR systems to provide a cost-effective approach 

for large-scale forest biomass estimation. 
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