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ABSTRACT 

Precision agriculture is the application of correct amount of fertilizers and water pesticide to achieve higher agricultural 

productivity. Furthermore, under the framework of precision agriculture is the automated estimation of yield with advanced 

technologies including Artificial Intelligence (AI) and Remote Sensing (RS). The use of RS has advanced crop yield 

estimations and predictions in recent years. However, to validate RS-based models it is important to perform in-situ 

exercises such as fruit counting, which is a time-consuming task that increases the production costs. Drones, robots, and 

in-situ cameras in combination with AI algorithms are widely used to efficiently address these issues. The recent 
advancement in computational resources and power available has enabled the utilization of Deep Learning AI models. One 

of the best-performing models for object detection is the You-Only-Look-Once (YOLO). In this study, the YOLOv5s is 

used for object detection, which is the second smallest and fastest YOLOv5 architecture, on two different benchmark 

datasets collected from AgML. The first dataset consists of 1730 images of mango trees in Australia during night, and the 

second dataset consists of 6512 images of wheat heads collected from different regions around the world. The main 

objective of this work is to demonstrate the capabilities of light AI models for object detection and to evaluate their 

performance, which will serve as a benchmark for future comparison with the on-board environment.  
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1. INTRODUCTION 

Agriculture is one of the largest and most important industries in Cyprus and worldwide [1]. Crop yield estimation 

underpins planning strategies to fulfill projected demands of human population under the constraints of food security. 

Precision agriculture (PA) is a farming method that uses data and modern technologies to maximize crop yield through 

decision-making applications. A key goal of PA is to improve yield estimation, which has traditionally been estimated 

with manual sampling or other indirect methods. Remote Sensing (RS) has been found important in PA and yield 

estimation tasks during the last decades, due to the daily volume of data it generates [4]. However, validating such RS-

based models for yield estimation requires further enhancement with in-situ work, e.g., fruit counting. Those field exercises 

require many manhours. Estimating yield with higher accuracy helps farmers, stakeholders, and relevant governmental 

bodies for a better planning to satisfy the needs of consumers. Moreover, yield assessments can enhance the market 

projections and more precise financial management of agricultural market[9]. 

The use of data-driven application in farming using Artificial Intelligence (AI) has shown promising performance to 
efficiently validate RS models [3]. For example, data derived from unmanned aerial vehicles (UAVs), robots and cameras 

installed in fields are combined with Deep Learning (DL) models that are able to perform object detection tasks and, 

consequently, perform fruit counting [5], [6], [7]. Two primary categories exist in the subject of object detection AI models, 

i.e., one-stage and two-stage models. Two-stage models are typically  based on the architecture of region-based 

Convolutional Neural Network (R-CNN) and they are utilizing a region proposal network (RPN) such as the Faster R-

CNN [10] to extract potential object regions. The extracted regions are then used to classify the objects of an image and 

execute the bounding box regression to mark the object. These algorithms are executing tasks with higher accuracy due to 

their capability to execute detection in two stages by enhancing object localization, but they are slow and not usually 

suitable for real-time applications. More variations of those methodologies have been developed through the years such as 
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Fast R-CNN and Mask R-CNN [11], [12]. On the other hand, one-stage models are more efficient in the aspect of real-

time processing as they are executing object classification and bounding box regression in the same neural network. 

Popular  models are the different versions and variations of the You Only Look Once (YOLO) algorithm [13], [14]. 

According to a study, YOLOv5s achieved 1.84% higher precision on different varieties of grapes’ real-time detection in 

complex agricultural environments compared to other YOLO variations [15]. A channel pruning is applied on YOLOv5 
to develop a lighter architecture by reducing the floating-point operations and then used on real-time tracking of grapes on 

field images and reached a mean Average Precision (mAP) of 82.3% while also improved the detection performance on 

overlapping grapes [16]. An improved YOLOv5s using the method Soft Non-Maximum Suppression (Soft-NMS) is used 

for tomato detection in a working environment as a part of picking robots [17]. The model succeeds 92% and 82% of 

precision and recall, respectively. Another study shows the ability of YOLOv5 installed on picking robots for real-time 

apple detection [18]. A YOLOv5s enhanced with a spatial attention module and an adaptive context information fusion 

module is developed for pineapple buds’ detection on UAV’s in-situ captured images. The proposed methodology 

increased the mAP@0.5 (mean Average Precision at Intersection of Union equal to 0.5) by 7.4% and mAP@0.5:0.95  

(mean Average Precision at Intersection of Union from 0.5 to 0.95) by 31% [19]. An image processing methodology is 

proposed for the detection of cotton bolls on images captured by a remote-controlled robot, using more traditional 

methodologies [20]. Later on, an improvement of this work was proposed by the same author, using a variation of Faster 

R-CNN, known as FrRCNN5-cls, which achieved an R-squared (R² or the coefficient of determination) of 0.88 and Root 
Mean Square Error (RMSE) of 0.79 [21]. Another model, which uses YOLOv5s as the base model with ShuffleNet-v2 as 

the backbone model, after fine tuning achieved an improvement of 3.5% at mAP on litchi fruit detection [22]. The YOLOv4 

is evaluated on RGB chestnuts’ images captured by a UAV and achieved an R2 of 0.98 and RMSE of 6.3 [24]. Moreover, 

improved fundamental variations of YOLOv5s adapting attention mechanisms and robustness to fog are considered for 

real-time object detection tasks in uncertain agricultural landscapes [25], [26].In this study one of the light variations of 

YOLOv5s is adopted on two different benchmark datasets for counting mangoes and wheat heads. Mango fruit is one of 

the most demanded fruits around different geographical areas in the world such as Asia, Africa, and Latin America. On 

the other hand, wheat has a high importance for Cyprus with an annual value of ca. 16.4 million euros, covering an area 

of ca. 12.000 ha and a production of ca. 25.000 metric tons (t) per year [8]. Furthermore, this study aims to evaluate 

YOLOv5s on crop yield estimation tasks using in-situ captured images as a preliminary work before comparing it with 

other lightweight variations and examine the different on-board processing aspects.  

The rest of the paper is structured as follows. Section 2 describes the methodology followed for the fine tuning of 

YOLOv5s, the experimental setup and the evaluation strategy used. Moreover, describes the two benchmark datasets used 

in the experimental study. Section 3 gives an overview of the experimental results concerning the performance and time 

consumption of the investigated model. Finally, Section 4 concludes this work. 

2. MATERIALS AND METHODS 

2.1 Benchmark datasets 

In this study. two benchmark datasets are utilized for the preliminary evaluation of YOLOv5s on yield estimation from 

field images. Both datasets are acquired using the AgML Python library [27], which is an open-access package offering 

access to fundamental object detection models and benchmark datasets for agricultural tasks. The first dataset consists of 
1730 images of mango trees during night-time. The images are captured using a ground-based RGB sensor from mango 

orchards in Australia [28]. On the other hand, the dataset for wheat heads is also developed from images acquired with a 

ground-based RGB sensor. The images are captured from plots cultivated with wheat from around the world and are 6512 

in total [29]. Both datasets consist of single classes and are suitable for training fundamental models performing object 

detection tasks. 
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Figure 1. Example of the two benchmark datasets. On the left there is a representative example from the mango dataset 
whereas on the right a representative example from the wheat head dataset. Red boxes on both images indicate the 
annotation boxes. 

2.2 You Only Look Once version 5 

YOLOv5, or You Only Look Once version 5, is a fundamental object detection model with real-time capabilities. The 

architecture (figure 2) of YOLOv5 consists of a backbone network, neck and head (output). The primary function of the 

backbone, which is usually an altered CSPDarknet53, is to extract detailed, layered features from the input images. The 

neck, which consists of PANet (Path Aggregation Network), connects the various backbone stages to improve feature 

fusion and the model's capacity to detect objects at different scales. Ultimately, the head is made up of multiple 
convolutional layers that predict confidence scores, object classes, and bounding boxes. YOLOv5 is enhanced in four 

different aspects. The first advancement in the model is the operation of mosaic-data-augmentation which improves the 

training speed and network accuracy. YOLOv5, in order to enhance its ability of detecting targets of various sizes, is using 

the adaptive anchor computation and the adaptive picture scaling techniques. Furthermore, the model adopts fresh concepts 

in the backbone network and, to enhance the computation and improve the feature representation, adds the focus structure 

and the cross-stage partial (CSP) structure. Moreover, the Neck network is using a Feature Pyramid Network and a Pyramid 

Attention Network and adds the CSP2 architecture [30], [31]. Those newly added strategies enhanced the general model’s 

performance. Still, YOLOv5 faces limitations in detecting tiny targets. YOLOv5s is the second smallest and fastest 

architecture in the family of YOLOv5 algorithms [32]. 

 

2.3 Evaluation metrics 

The performance of YOLOv5 was evaluated using three different well known evaluation metrics for object detection tasks. 
The first metric given in eq.1 is the Precision, which measures the ability of a classification algorithm to identify only the 

relevant data points. Recall, which is given in eq.2, is the ability of a model to identify all the relevant cases within a data 

set.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (1), 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2), 

where true positives is the number of model’s correct predictions of the positive class, false positives is the number of 

model’s incorrect predictions of the positive class and false negatives is the number of model’s incorrect predictions of the 

negative class.  

The mean Average Precision (mAP) given in eq.3 is widely used for object detection models to evaluate their performance 

based on a range of Intersection of Union (IoU). 

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 (3), 

where n is the number of classes and APk is the average precision of class k. In cases where mAP is evaluated on certain 

ranges of IoU, it is the average precision of class k at the specific IoU range. 
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Figure 2. YOLOv5 architecture consists of the input layer, backbone, neck and head (output) components. 

2.4 Experimental Setup 

To evaluate the performance of the YOLOv5s object detection model on the two datasets, they were randomly split into 

training (70%), validation (20%) and testing (10%) subsets. YOLOv5s is a fundamental pre-trained model and thus 

hyperparameter tuning is not necessary to be performed in this case. Moreover, for each dataset, two independent instances 

of the model are fine-tuned with further training of 50 epochs. YOLOv5 is applying built-in augmentations (e.g., blur, 

median blur, gray, etc.) to the datasets. 

3. EXPERIMENTAL RESULTS 

3.1 Model’s performance 

The accuracy metrics are defined in Equations (1) to (3) and are used to evaluate the YOLOv5s. Table 1 shows the 

precision, recall, mAP@50 and mAP@50:95 achieved on both datasets. The investigated object detection model performed 

better on the mango dataset with respect to all the evaluation metrics, i.e., Precision = 0.960, Recall = 0.954, mAP@50 = 

0.981, and mAP@50:95 = 0.734. On the wheat head dataset the model achieved relatively high accuracy with respect to 

three of the evaluation metrics, i.e., Precision = 0.910, Recall = 0.824, and mAP@50 = 0.896, but has low accuracy in 

mAP@50:95. This is because mango colour, shape, and size (especially when they are ripening) creates a contrast with 

the background of the image and, thus, it is easier for YOLOv5s to detect and generate a bounding box around the fruits. 

In contrast, wheat colour together with the density of the stems (during both of their states, green and dry) in an image 

imposes challenges for YOLOv5s to detect the wheat heads. Furthermore the limitations on detecting tiny objects probably 
influences the performance of the model, despite the large dataset. The model counted a total of 1151 mango instances on 

the 127 images of the testing set, and 4399 wheat heads instances on the 100 images of the testing set. Figures 3 and 4 

present examples of the detected mangoes and wheat heads, respectively. 

 

Table 1.  Experimental results of object detection tasks using YOLOv5s on mango and wheat head benchmark datasets. 

Dataset Precision Recall mAP@50 mAP@50:95 

Mango 0.960 0.954 0.981 0.734 

Wheat Head 0.910 0.824 0.896 0.519 
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Figure 3. Indicative examples of detected mangoes 

 

Figure 4. Indicative examples of detected wheat heads 

3.2 Time consumption of YOLOv5s 

YOLOv5s needed almost the same time for the 50 epochs of training on both mango and wheat head datasets with 1753.2 

and 1828.8 seconds, respectively. YOLOv5s is faster on the wheat head dataset regarding pre-process and inference with 

0.0004 and 0.0116 seconds, respectively. The model performed non-maximum suppression in 0.0141 seconds for the 

mango dataset, in contrast to the 0.0190 seconds needed for the wheat head dataset. All the performance metrics are shown 

in Table 2. Further than training, the model applies other functionalities that are pre-process, which is the step where the 

YOLOv5 prepares the image by applying resizing and normalization on pixels’ values, inference, which is the step where 
the model is making the predictions, and Non-Maximum suppression, which is the step where the model is keeping the 

best bounding box for each object by comparing to others and suppressing low-confidence and overlapping boxes. The 

experiments are conducted using a Virtual Machine from Google Colab equipped with 52GB of RAM and an A100GPU. 

Future experiments will include the use of specific on-board hardware. 

Table 2.  Cost effective metrics. 

 

4. CONCLUSION 

In this work, YOLOv5s, a light variation of YOLOv5, is investigated for its performance on two benchmark datasets for 

yield estimation using object detection. Based on the model’s performance on the experiments, the following concluding 

remarks can be drawn. YOLOv5s performed better on the mango dataset, mainly due to the colour, shape and size of the 

fruits. However, the shape, colour and density of wheat heads generates multiple objects overlaps in the images resulting 

in lower accuracy for the YOLOv5s.  The fine tuning of the model requires approximately 1800 seconds. The inference 

Dataset Training (s) Pre-process (s) Inference (s) Non-maximum suppression (s) 

Mango 1753.2 0.0083 0.0142 0.0141 

Wheat Head 1828.8 0.0004 0.0116 0.0190 
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time of 0.0142 and 0.0116 enables the further examination of on-board yield estimation using ground-based cameras or 

UAVs. Indeed, the use of AI on-board requires evaluating specific aspects, such as the size of the model and the use of 

computational resources, which must be limited compared to a ground-based scenario. Therefore, the use of specific on-

board hardware will be considered for the future development.  
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