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ABSTRACT 

The study proposes a multimodal fusion framework termed Vision-Motion Multimodal Classification (VMMC), with the 

objective of addressing the inherent complexities in the classification of driver styles. This framework amalgamates 

visual and motion data, leveraging the harmonious interplay between the visual modality feature extraction module and 

the motion feature extraction module, complemented by the integration of a cross-modal attention mechanism, to achieve 

precise classification of driver driving styles. Through meticulous experimental evaluation, the VMMC framework 

demonstrates substantial advantages across metrics such as precision, recall, and F1 score, thus validating the superiority 

of the VMMC framework. These research findings not only provide novel perspectives on the application of multimodal 

fusion in driver style classification but also offer invaluable insights for a deeper understanding of driving style patterns. 
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1. INTRODUCTION 

The examination of driving styles stands as a cornerstone in the realm of intelligent transportation and driver assistance 

systems, where a nuanced understanding of drivers’ behaviors and risk tendencies holds significant implications for 

enhancing driving safety and advancing autonomous vehicle technologies1,2. However, traditional methodologies often 

fall short in capturing the complex interplay between human operators and vehicular systems, thus necessitating a 

paradigm shift towards holistic approaches that integrate diverse sensory modalities to unveil the intricate semantic 

layers embedded within driving behaviors3-7. 

Despite recent strides in multimodal fusion techniques, current methodologies frequently rely on rudimentary strategies 

such as feature concatenation or cascading, inadvertently constraining the full exploration of synergistic relationships and 

complementarities among disparate modalities8. Consequently, there exists a compelling need to delve deeper into the 

intrinsic correlations among sensory inputs, unlocking their latent potential to enrich feature representations and bolster 

classification accuracies. 

In response to this exigency, we introduce an innovative Multimodal Driving Style Classification (VMMC) framework 

designed to seamlessly integrate visual and motion modalities, thereby harnessing their synergistic information to 

achieve refined driving style classification9-11. The VMMC framework transcends conventional approaches by offering 

several pioneering advancements: 

Comprehensive Multimodal Integration: By fusing visual and kinetic signals, the VMMC framework transcends the 

limitations of unimodal analyses, enabling a holistic interpretation of driving behaviors that encompasses both spatial 

and temporal dynamics. 

Dynamic Cross-Modal Attention Mechanisms: Leveraging sophisticated attention mechanisms, the VMMC framework 

dynamically models intermodal correlations, enabling adaptive feature selection and refinement to capture salient aspects 

of driving style across modalities. 

Streamlined Unimodal Encoding Networks: Through tailored encoding networks for visual and kinetic modalities, the 

VMMC framework optimally extracts discriminative features from each modality, facilitating a synergistic fusion that 

enhances classification performance. 
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The forthcoming chapters will meticulously explore the theoretical underpinnings and technical background of our study, 

offering a comprehensive review of existing methodologies for driving style analysis and multimodal learning techniques 

(Chapter Two). Subsequently, we will delve into the theoretical principles and computational models underpinning the 

VMMC framework (Chapter Three), followed by a rigorous evaluation of its classification performance on publicly 

available datasets to substantiate its efficacy (Chapter Four). Finally, the concluding chapter will synthesize our findings, 

offering insights into future research trajectories and practical applications, thereby contributing to the advancement of 

knowledge in the domains of intelligent transportation systems and beyond. 

Our work represents a significant stride towards a deeper understanding of driving behaviors and paves the way for the 

development of personalized driver assistance systems and the refinement of autonomous driving capabilities, with 

profound implications for both theory and practice in intelligent transportation. 

2. RELATED WORKS 

In recent years, the study of driving styles has garnered considerable attention due to its significance in enhancing road 

safety and the development of intelligent transportation systems12-15. Research efforts have focused on discerning and 

classifying driving behaviors with meticulous attention16-18, a pursuit integral to refining decision-making mechanisms in 

autonomous vehicles and advanced driver-assistance systems. 

Traditional approaches to scrutinizing driving styles have predominantly relied on intricate feature extraction techniques, 

often integrated into conventional machine learning paradigms such as decision trees and support vector machines. 

While effective to a certain extent, these methodologies exhibit limitations in generalization capabilities and necessitate 

significant domain expertise and human resources for optimal performance19. 

With the advent of deep learning methodologies, researchers have increasingly turned to automated feature learning 

approaches rooted in deep neural networks20-23. These approaches aim to extract discriminative feature representations 

directly from raw data in an end-to-end fashion, thus bypassing the need for manual feature engineering. For instance, 

Wüurtz and Göhringer utilized Long Short-Term Memory (LSTM) networks to encode driving style features from GPS 

data, showcasing the potential of recurrent neural networks in capturing temporal dependencies in driving behavior24. 

Building upon this trend, Mou et al. introduced an attention-enhanced Convolutional Neural Network (CNN) and LSTM 

model that integrates eye-tracking, vehicle telemetry, and environmental data to detect drivers’ stress levels25. This 

multi-modal approach reflects the growing recognition of the diverse sources of information that contribute to 

understanding driving behavior, emphasizing the importance of holistic data fusion techniques. 

Furthermore, recent studies have highlighted the significant inter-individual variability in the perception of road 

conditions and vehicle dynamics, underscoring the need for personalized analysis and classification of drivers. For 

example, Hirose et al. employed cluster analysis on time-series data including acceleration, torque, and steering wheel 

angle to group drivers based on their distinct driving styles, illustrating the potential for data-driven segmentation of 

driver populations26. 

Despite the advancements enabled by deep learning models, a singular modality may not fully capture the complexity of 

driving styles27. To address this limitation, researchers have explored multimodal fusion approaches to integrate 

heterogeneous information from diverse sources. Wang et al. proposed a cascaded CNN and LSTM architecture for 

fusing in-vehicle sensor data with video streams to detect driving styles28, while Vaitkus.V, et al. introduced an 

attention-based framework for fusing video and CAN bus data, demonstrating the efficacy of leveraging complementary 

modalities for enhanced classification performance29. 

Nevertheless, existing methodologies are not without their constraints and opportunities for refinement. Common fusion 

strategies often rely on simplistic concatenation or junction approaches, potentially overlooking nuanced cross-modal 

correlations. Moreover, optimizing feature extraction efficiency remains a critical challenge30, particularly for visual and 

kinetic modalities. To address these limitations, the proposed VMMC framework introduces cross-modal attention 

mechanisms and efficient feature encoding techniques, aiming to achieve accurate and robust classification of driving styles. 

In summary, the landscape of driving style analysis and classification is evolving rapidly, driven by advancements in 

deep learning, multimodal fusion, and personalized modeling approaches. By synthesizing insights from diverse research 

endeavors, this paper contributes to the ongoing pursuit of enhancing traffic safety and advancing the capabilities of 

intelligent transportation systems. 
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3. METHOD 

We propose a comprehensive multimodal fusion framework named VMMC, tailored for precise classification of driving 

styles. This framework seamlessly integrates visual and motion information, facilitating a holistic understanding of 

driving behaviors. Comprising a visual modality feature extraction module and a motion feature extraction module, 

VMMC leverages the complementary nature of visual and motion data to enrich feature representation. 

For our driving style classification task, the input data encompasses two primary modalities: a video sequence 𝑽 =
[𝒗1, 𝒗2, … , 𝒗𝑇] ∈ ℝ

𝑇×𝐻×𝑊×𝐷  and a vehicle motion trajectory sequence 𝑴 = [𝒎1,𝒎2, … ,𝒎𝑇] ∈ ℝ
𝑇×𝑑𝑚 . The video 

sequence 𝑽 captures the visual dynamics of driving, where 𝑇 denotes the temporal duration, 𝐻 ×𝑊 represents the 

resolution, and 𝐷 signifies the number of channels. On the other hand, the vehicle motion trajectory sequence 𝑴 

encapsulates features such as velocity, acceleration, and other 𝑑𝑚-dimensional attributes, providing insights into the 

dynamic behavior of the vehicle. 

The architecture of the VMMC framework, depicted in Figure 1, orchestrates the seamless integration of visual and 

motion modalities. The visual modality feature extraction module processes the video sequence 𝑽, while the motion 

feature extraction module analyzes the vehicle motion trajectory sequence 𝑴. Finally, by employing cross-modal 

attention mechanisms, VMMC fuses the extracted visual and motion features to obtain a more enriched feature 

representation, facilitating the rational classification of driving styles. 

 

Figure 1. The architecture of the VMMC framework. 

This methodological approach not only capitalizes on the inherent characteristics of visual and motion data but also 

emphasizes the importance of cross-modal interactions in capturing the nuanced aspects of driving behaviors. Through 

the VMMC framework, we aim to advance the state-of-the-art in driving style classification, contributing to enhanced 

traffic safety and the development of intelligent transportation systems. 

(a) Visual features extraction  

ECANet epitomizes a lightweight channel attention mechanism. Through seamless integration, it autonomously discerns 

correlations among distinct channels within feature maps, thereby enhancing network performance. Inspired by its 

principles, we seamlessly integrate channel attention mechanisms into our visual modality encoding process to enrich the 

model’s representational capacity. This strategic integration amplifies the network’s emphasis on pivotal features while 

upholding a modest level of computational complexity. 

We start by assigning an attention weight 𝛼𝑐 to each channel within the convolutional feature map. The sum of these 

attention weights for all channels constitutes the attention vector 𝜶. 

𝜶 = 𝜶′⊙𝜷                                             (1) 

where the symbol ⊙ signifies element-wise multiplication. The initial attention vector 𝜶′ ∈ ℝ𝐶 is acquired through a 
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linear transformation followed by an activation function. The vector 𝜷 ∈ ℝ𝐶  represents the interaction encoding 

weights, derived by applying a linear transformation and activation function to the descriptor 𝐯𝑔, obtained through 

global average pooling across each channel group. 

{
𝜶′ = 𝜎(𝑾1𝒅 + 𝒃1), 𝐝 =

1

𝐻×𝑊
∑  𝑖,𝑗 𝑽:,𝑖,𝑗

𝜷 = 𝜎(𝐖2𝐯 + 𝒃2), 𝐯 = Concat(𝐯𝑔 for 𝑔 = 1 to 𝑘)
                     (2) 

where, 𝜎 symbolizes the sigmoid activation function, where 𝑾1 and 𝒃1 respectively denote the weight matrix and 

bias term. 𝒅 signifies the global descriptor, representing the average value of each channel in the spatial dimension. 𝑾2 

and 𝒃2 represent the weight matrix and bias term respectively, while 𝑘 indicates the number of channel groups. 𝐯𝑔 

denotes the global average pooling descriptor for the 𝑔-th channel group, articulated as follows: 

𝐯𝑔 =
1

𝐶 𝑘⁄
∑

1

𝐻𝑊
∑  𝑖,𝑗 𝑽𝑐,𝑖,𝑗

𝑔𝐶

𝑘

𝑐=
(𝑔−1)𝐶

𝑘
+1

                                 (3) 

Continuing, we acquire the weighted output feature map through attention weighting: 

𝒀𝑐 = 𝛼𝑐 ⋅ 𝑽𝑐 , 𝑐 = 1,2,⋯ , 𝐶                                    (4) 

where 𝑽𝑐 represents the 𝑐𝑡ℎ channel of the original input, and 𝒀𝑐 denotes the 𝑐𝑡ℎ channel of the weighted output 

feature map. 

Finally, we perform average pooling on the spatial dimensions 𝐻′ ×𝑊′ , compressing the visual features into a 

sequential form, obtaining the input 𝑿(𝑣) for subsequent cross-modal fusion: 

𝑿(𝑣) =
1

𝐻′𝑊′
∑  𝐻′

ℎ=1 ∑  𝑊′

𝑤=1 𝒀:,:,ℎ,𝑤 ∈ ℝ
𝑇×𝐶                               (5) 

(b) Motion features extraction  

For the series of vehicle motion trajectories 𝑴 = [𝒎1,𝒎2, … ,𝒎𝑇] ∈ ℝ
𝑇×𝑑𝑚, where 𝑇 denotes the sequence length and 

𝑑𝑚 represents the feature dimension, we apply a linear mapping to the input sequence 𝑴 to derive the query matrix 𝑸, 

the key matrix 𝑲, and the value matrix 𝑽. 

   𝑸 = 𝑴(𝑾𝑄
(𝑚)
)𝑇 , 𝑲 = 𝑴(𝑾𝐾

(𝑚)
)𝑇 , 𝑽 = 𝑴(𝑾𝑉

(𝑚)
)𝑇                          (6) 

where 𝑾𝑄
(𝑚)
,𝑾𝐾

(𝑚)
,𝑾𝑉

(𝑚)
∈ ℝ𝑑𝑎×𝑑𝑚 represent the learnable linear transformation parameters, with 𝑑𝑎 denoting the 

attention dimensionality. 

To optimize the management of extensive sequence inputs while upholding minimal computational demands, we drew 

inspiration from the sparse self-attention mechanism introduced in Longformer. This approach involves selectively 

retaining attention scores solely between designated positions within the sequence. We define a variable-sized attention 

window 𝒲(𝑖): 

𝒲(𝑖) = {𝑗 ∈ [1, 𝑛]: |𝑖 − 𝑗| < 𝑤} ∪ {𝑝1(𝑖), 𝑝2(𝑖), … , 𝑝𝑚(𝑖)}                     (7) 

where, 𝑤 denotes the dimensionality of the attention window. 𝑝𝑘(𝑖) represents the indices of an additional set of 𝑚 

global positions that are height-wise associated with position 𝑖. 

When computing the attention score matrix 𝑨, we only compute the score 𝑨𝑖𝑗 for positions (𝑖, 𝑗) where 𝑗 ∈ 𝒲(𝑖). 

𝑨𝑖𝑗 = {
(𝑸𝑖𝑲𝑗

𝑇)

√𝑑
, 𝑗 ∈ 𝒲(𝑖)

−∞, 𝑗 ∉ 𝒲(𝑖)
                                        (8) 

where 𝑸 ∈ ℝ𝑇×𝑑𝑎  and 𝑲 ∈ ℝ𝑇×𝑑𝑎. 

The attention score matrix 𝑨 ∈ ℝ𝑇×𝑇  is obtained through computation, and after applying the softmax operation, we 

obtain the normalized attention matrix �̅�𝑖𝑗: 

�̅�𝑖𝑗 =
𝑒
𝐴𝑖𝑗

∑  𝑇
𝑘=1 𝑒

𝐴𝑖𝑘
                                          (9) 
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The ultimate encoded sequence is illustrated as follows: 

𝑿𝑖𝑗
(𝑚) = ∑  𝑇

𝑘=1 �̅�𝑖𝑘 ⋅ 𝑉𝑘𝑗                                      (10) 

where 𝑽 ∈ ℝ𝑇×𝑑𝑎  denotes a numerical matrix, 𝑿𝑖𝑗
(𝑚)

 signifies the element located at the 𝑖𝑡ℎ row and  𝑗𝑡ℎ column of 

the sequence post encoding through motion modality. 

(c) Cross-modal fusion  

The visual modality input feature sequence is denoted as 𝑿(𝑣) = {𝑥1
(𝑣), 𝑥2

(𝑣), . . . , 𝑥𝑇
(𝑣)} ∈ ℝ𝑑𝑣 , and the motion modality 

input feature sequence is denoted as 𝑿(𝑚) = {𝑥1
(𝑚), 𝑥2

(𝑚), . . . , 𝑥𝑇
(𝑚)} ∈ ℝ𝑑𝑚 , where 𝑇 is the sequence length, and 𝑑𝑣 

and 𝑑𝑚 are the dimensions of the visual and motion features respectively. 

To optimize multimodal fusion, we utilize linear mapping on the input feature sequence to generate query 𝓠(∙), key 

𝓚(∙), and value 𝓥(∙) sequences: 

{
 
 
 
 

 
 
 
 𝓠(𝑣) = 𝑿(𝑣)(𝑾𝑄

(𝑣))𝑇 ∈ ℝ𝑇×𝑑𝑞

𝓚(𝑣) = 𝑿(𝑣)(𝑾𝐾
(𝑣))𝑇 ∈ ℝ𝑇×𝑑𝑘

𝓥(𝑣) = 𝑿(𝑣)(𝑾𝑉
(𝑣))𝑇 ∈ ℝ𝑇×𝑑𝑣

𝓠(𝑚) = 𝑿(𝑚)(𝑾𝑄
(𝑚))𝑇 ∈ ℝ𝑇×𝑑𝑞

𝓚(𝑚) = 𝑿(𝑚)(𝑾𝐾
(𝑚))𝑇 ∈ ℝ𝑇×𝑑𝑘

𝓥(𝑚) = 𝑿(𝑚)(𝑾𝑉
(𝑚))𝑇 ∈ ℝ𝑇×𝑑𝑣

                               (11) 

where, 𝑾𝑄
(⋅)
,𝑾𝐾

(⋅)
, and 𝑾𝑉

(⋅)
 are trainable parameters for linear transformations in ℝ𝑑⋅×𝑑⋅, where 𝑑𝑞 and 𝑑𝑘 represent 

the dimensions of the query and key, respectively, and 𝑑𝑣 represents the dimension of the value. 

We calculate cross-modal attention: 

{
𝓩(𝑣→𝑚) = Attn(𝓠(𝑣),𝓚(𝑚), 𝓥(𝑚)) ∈ ℝ𝑇×𝑑𝑣

𝓩(𝑚→𝑣) = Attn(𝓠(𝑚),𝓚(𝑣), 𝓥(𝑣)) ∈ ℝ𝑇×𝑑𝑞
                         (12) 

where, 𝓩(𝑣→𝑚) designates the attentional representation from the visual modality to the motion modality, while 𝓩(𝑣→𝑚) 
designates the attentional representation from the motion modality to the visual modality. The term Attn(⋅) refers to the 

scaled dot-product attention function, defined as: 

Attn(𝓠(∙),𝓚(∙), 𝓥(∙)) = softmax (
𝓠(∙)𝓚(∙)𝑇

√𝑑𝑘
)𝓥(∙)

= ∑  𝑇
𝑗=1 𝛾𝑖,𝑗𝐯𝑗

                         (13) 

In the equation, 𝛾𝑖,𝑗 =
exp(𝑞𝑖⋅𝑘𝑗)

∑  𝑇
𝑙=1 exp(𝑞𝑖⋅𝑘𝑙)

, where 𝑞𝑖 , 𝑘𝑗, and 𝑣𝑗 denote the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of 𝓠(∙),𝓚(∙), and 𝓥(∙) 

respectively. 

The final multimodal fusion feature representation 𝓕 is: 

𝓕 = Concat(𝑿(𝑣), 𝓩(𝑚→𝑣), 𝑿(𝑚), 𝓩(𝑣→𝑚)) ∈ ℝ𝑇×(𝑑𝑣+𝑑𝑞+𝑑𝑚+𝑑𝑣)                (14) 

(d) Loss function  

The classifier predicts the driving style �̂� based on the multimodal fusion representation 𝓕. 

�̂� =
exp(𝓕𝑖𝑗)

∑  𝑁
𝑘=1 exp(𝓕𝑖𝑘)

                                       (15) 

where 𝑖 ∈ {1,2, . . . , 𝑇}，𝑗 ∈ {1,2, . . . , (𝑑𝑣 + 𝑑𝑞 + 𝑑𝑚 + 𝑑𝑣)}. 

We define the total loss function ℒ as: 
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ℒ = ℒstyle + 𝜆𝑎ℒatt + 𝜆𝑟ℒreg                                (16) 

in this specified context, ℒstyle represents the cross-entropy loss utilized in the classification of driving styles: ℒstyle =

−∑  𝑁
𝑖=1 𝑦𝑖log(�̂�𝑖). ℒatt embodies the entropy regularization term applied to attention: ℒatt = −∑  𝑇

𝑖=1 ∑  𝑇
𝑗=1 𝛼𝑖,𝑗log 𝛼𝑖,𝑗. 

Furthermore, ℒreg indicates the regularization term associated with the kernel norm: ℒreg = 𝜆𝑟|𝚯|𝐹
2 . In this instance, 𝑁 

denotes the number of style categories, 𝚯 encompasses the complete set of model parameters, and 𝜆𝑎 and 𝜆𝑟 serve as 

the weighting coefficients for each loss term. 

4. EXPERIMENT 

In this section, we will offer a comprehensive elucidation of our implementation particulars and carry out experiments on 

a publicly accessible dataset to evaluate the effectiveness of our proposed VMMC framework. 

(a) Dataset and setup  

The UAH-Driveset stands as a prominent multimodal driving dataset that has garnered significant attention from the 

research community31,32. Painstakingly curated by the research team at the University of Alcalá (UAH) in Spain, this 

dataset has earned acclaim for its rich array of driving scenarios and detailed style annotations. Encompassing various 

real-world driving situations, including urban roads and highways, the UAH-Driveset provides a wealth of multimodal 

information, ranging from drivers’ biometric characteristics to vehicle state data, video recordings, and vehicle sensor data. 

These datasets serve as invaluable resources for delving into the intricacies of driving style patterns and driving styles. 

In this dataset, we elected to extract features pertaining to vehicle velocity, acceleration, rate of acceleration change, steering 

dynamics, vehicle positioning, temporal intervals, and traffic volume, resulting in 15 feature subsets. The objective was to 

capture a diverse array of driving style patterns and nuances in driving style. We opted for a batch size of 16, accompanied 

by 500 epochs, and implemented 6-fold cross-validation. The Adam optimizer was employed, with the learning rate set 

to 1 × 10−4. Following data preprocessing, we partitioned the sequential data with a 60% overlap rate and extracted 

features from each segment. The sample allocation ratio was 6:2:2 for training, validation, and testing, respectively. 

(b) Performance and analysis  

We evaluated our approach using the Precision (P), Recall (R), and F1 metrics33,34: 

P =
TP

TP+FP
,R =

TP

TP+FN
, F1 = 2 ×

P×R

P+R
                                 (17) 

where TP represents the quantity of true positives, FP denotes the quantity of false positives, and FN signifies the 

quantity of false negatives. 

We compared the VMMC method with established classical approaches, namely CNN, LSTM, CNN-LSTM, 

FCN-LSTM, and GRU. 

Table 1. The effectiveness of varied methodologies in the classification of driving styles. 

Method P R F1 

CNN 0.6125 0.6100 0.6112 

LSTM 0.8894 0.8911 0.8902 

GRU 0.9097 0.9125 0.9111 

CNN-LSTM 0.9568 0.9597 0.9582 

FCN-LSTM 0.9541 0.9601 0.9571 

VMMC 0.9705 0.9762 0.9733 

Table 1 illustrates the performance of six distinct algorithmic methodologies in the classification of driving styles. 

Conventional algorithms such as CNN, LSTM, and GRU rely solely on visual or motion cues, thereby constraining their 

ability to comprehensively exploit data. Consequently, their performance notably lags behind more integrated approaches 

such as CNN-LSTM, FCN-LSTM, and VMMC. Particularly noteworthy is VMMC, which, leveraging its multimodal 
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fusion framework, integrates visual and motion cues, thus enhancing the model’s capacity to capture the diversity of 

driving styles. Moreover, VMMC introduces a cross-modal attention mechanism, facilitating the seamless integration of 

visual and motion features. Discerning their interdependencies and dynamically balancing the significance of various 

modalities, enhances the effectiveness of feature fusion and representation learning. Conversely, algorithms lacking such 

mechanisms may struggle to effectively integrate heterogeneous information sources, potentially underscoring the 

superiority of VMMC over CNN-LSTM, FCN-LSTM, and analogous algorithms. 

Benefiting from the aforementioned advantages, VMMC outperforms other algorithms across all metrics, achieving 

precision, recall, and F1 scores of 0.9705, 0.9762, and 0.9733 respectively. These scores represent improvements of 

1.72%, 1.68%, and 1.69% over the second-best method. 

(c) Ablation experiment  

To ascertain the effectiveness of each component, we established three control groups for experimentation, as shown in 

Figure 2, and specifically: 

VMMC-NoV: Omitting the visual feature extraction module from the original framework aimed to underscore the 

importance of visual information in driving style classification. 

VMMC-NoM: Removing the motion feature extraction module from the original framework aimed to underscore the 

significance of visual information in driving style classification. 

VMMC-NoMu: Eliminating the cross-modal attention mechanism resulted in straightforward processing of visual and 

motion features before concatenation, with the objective of validating the efficacy of the cross-modal attention 

mechanism. 

 

Figure 2. The Performance of VMMC, VMMC-NoMu, VMMC-NoV, and VMMC-NoM. 

The VMMC demonstrates superior performance across all assessment metrics, indicating the effectiveness of the 

comprehensive model in seamlessly integrating visual and motion data while augmenting representational capacity 

through cross-modal attention mechanisms, thereby significantly enhancing the precision of driving style classification. 

Despite a slight decline in performance upon the removal of the cross-modal attention mechanism, it still surpasses the 

results of other ablative experiments. This further underscores the importance of both visual and motion attributes in 

driving style classification. The removal of the visual feature extraction module, relying solely on motion features for 

classification, leads to a noticeable decrease in performance compared to the complete model. However, it surpasses the 

performance of removing the motion feature extraction module, suggesting that for the task of driving style 

classification, the information provided by our motion feature extraction module exceeds that of the visual feature 

extraction module. 

5. CONCLUSION 

This paper introduces the VMMC framework, which seeks to achieve a precise classification of driving styles. Through 

the integration of visual and motion information and the enhancement of feature representation via cross-modal attention 

mechanisms, this framework presents an efficient solution for the classification of driver style. 

In the VMMC framework, we initiated the extraction of features from both visual and motion modalities. The visual 
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aspect employed a lightweight channel attention mechanism, while the motion component utilized a sparse self-attention 

mechanism to manage lengthy sequence inputs. Subsequently, through multimodal fusion, we adeptly integrated visual 

and motion data to achieve a more comprehensive feature representation. Of particular significance, we introduced a 

cross-modal attention mechanism to dynamically discern and reconcile the interconnections among diverse modalities, 

thereby enhancing the effectiveness of feature fusion. 

The experimental findings illustrate that the VMMC framework displays notable advantages in the realm of driver-style 

classification. In contrast to conventional methodologies and alternative comprehensive approaches, VMMC attains 

superior performance metrics encompassing precision, recall, and F1 score. 
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