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ABSTRACT 

In order to address the structural limitations inherent in the current grey prediction model, this paper proposes the time 

power conformable fractional derivative non-linear grey Bernoulli model (CFNGBM(p,1) model) based on the 

traditional grey Bernoulli model, leveraging the theory of fractional calculus. Firstly, by utilizing the computational 

advantages of conformable fractional derivatives, the grey derivative of the traditional whitening equation is extended 

from first-order to fractional-order, making the model structure more flexible. Secondly, a time power term is introduced 

into the model structure to fully capture the non-linear relationship presented in real systems. Additionally, to address the 

overfitting phenomenon in grey models, an extrapolation optimization mechanism is incorporated into the traditional 

parameter optimization process by simulating future prediction scenarios. Finally, a case study of monthly production 

data of photovoltaic glass in the crystalline silicon industry chain demonstrates that the proposed CFNGBM(p,1) model 

outperforms three other grey Bernoulli models in terms of accuracy, and the use of extrapolation optimization 

mechanism significantly reduces overfitting.  
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1. INTRODUCTION  

The grey prediction model is a core component of grey system theory, with rich achievements1. In order to reflect the 

non-linear characteristics of data sequences, Deng first proposed the grey power prediction model based on the Bernoulli 

equation (NGBM(1,1) model), which can adapt to different time series by changing the non-linear Bernoulli parameters, 

thereby exhibiting better fitting performance than traditional grey prediction models2. 

As a foundational model, NGBM(1,1) has room for improvement. In order to further enhance the adaptability of the 

NGBM(1,1) model to different sequences and achieve a greater capability to adapt to dynamic changes in systems, 

Wang3 extended the structural parameters of the NGBM(1,1) model to time-varying parameters. To expand the 

application scope of the NGBM(1,1) model, Ma et al.4 proposed a multivariable grey Bernoulli model and validated its 

feasibility with real-world cases. To further enhance the model’s nonlinear fitting capability, Wu et al.5 introduced the 

fractional-order accumulation operator into the NGBM(1,1) model. Moreover, Wu et al.6 combined the NGBM(1,1) 

model with the NGM(1,1,k,c) model, creating the NGBM(1,1,k,c) model, and validated its feasibility using the annual 

consumption of fossil energy in five countries. Zheng et al.7 further developed the NGBM(1,1,k,c) model based on 

conformable fractional-order accumulation operator and validated its feasibility using China’s natural gas production. 

Wang et al.8 introduced a novel CFTDNGBM(1,1) model by combining time delay effects, conformable fractional-order 

accumulation operator, NGBM(1,1) model, arithmetic optimization algorithm, and backward difference operator, 

successfully applying it to rural economies. Lao et al.9 capitalized on the advantages of the grey prediction model with a 

time power term, fractional-order accumulation, and NGBM(1,1) model to develop the DFNGBM(1,1,α) model. 

Compared to earlier nonlinear grey prediction models, the DFNGBM(1,1,α) model not only meets the requirements of 

unbiasedness and uniformity but also exhibits a characteristic of prioritizing new information accumulation, thereby 

demonstrating outstanding performance in short-term forecasting tasks. 

Although the optimization methods mentioned above have achieved significant application effects, their whitening 

differential equations are all first-order. Since first-order derivative models are ideal memory models and are not suitable 
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for describing irregular phenomena, they cannot adjust model parameters based on the actual data characteristics for 

sequences with large data fluctuations10. For this purpose, Wu et al.11 first extended the whitening differential equation of 

the grey model from integer-order to fractional-order, establishing the GM(1,1) model incorporating Caputo-type 

fractional-order derivatives. Subsequently, through analysis and comparison, they confirmed the potential of the GM(1,1) 

model based on Caputo-type fractional-order derivatives in numerical simulation. Then, subsequent researchers 

combined Caputo, Grunwald-Letnikov (GL), and Riemann-Liouville (RL) types of fractional-order derivatives with 

some mainstream grey prediction models, developing more powerful models12. Although these fractional-order grey 

prediction models demonstrate good predictive performance, its computational complexity is high and it is difficult to be 

widely applied in practical scenarios. Khalil et al.13 introduced the concept of conformable fractional-order derivatives, 

which offer a straightforward calculation derivation, making them theoretically easy to handle. Additionally, they can 

adhere to conventional properties that traditional fractional-order derivatives (such as Caputo, GL, RL, et al.) may not 

satisfy. Therefore, in recent years, conformable fractional-order derivatives have garnered significant attention. Ma et 

al.14 was the first to incorporate the concept of conformable fractional-order derivatives into grey prediction models. 

Building upon this foundation, Xie et al.15 constructed a GM(1,1) model based on conformable fractional-order 

derivatives and revealed the connections between this model and traditional grey prediction models as well as the 

GM(1,1) model based on Caputo-type fractional-order derivatives. Subsequently, Wu et al.16 established a multivariate 

grey prediction model based on conformable fractional-order derivatives and validated its feasibility through examples. 

Drawing inspiration from the aforementioned literature, this paper aims to further enhance the adaptability of the grey 

Bernoulli model to various data sequences and expand the theoretical framework and application scope of grey 

prediction models. Based on the traditional grey Bernoulli model, we fully exploit the advantages of conformable 

fractional derivatives by proposing a novel model that integrates conformable fractional derivatives, fractional 

accumulation, and nonlinear time power terms. And we provide the analytical solution for this model. Furthermore, we 

propose an extrapolation optimization mechanism to improve existing parameter optimization algorithms for determining 

the optimal hyperparameters of the model. Finally, we validate the proposed model and apply it to the analysis of the 

economic development in the photovoltaic silicon industry. 

2. SYSTEM DYNAMICS MODELLING 

2.1 Conformable fractional derivative 

Definition 1: Assumption function )0: ,f t R+ → , 
0t  as the starting point, and (0 1)p p   as the order, the 

conformable fractional derivative is defined as 
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2.2 Conformable fractional differential equation 

Definition 22: Assuming  (0) (0) (0) (0)(1), (2), , ( )X x x x n=  is a non-negative original sequence, the first-order 

accumulation generated sequence of (0)X  is  (1) (1) (1) (1)(1), (2), , ( )X x x x n= . Then, the sequence generated by the nearest 

neighbor mean of (1)X  is (1) (1) (1) (1){ (1), (2), , ( )}Z z z z n= , where 
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Definition 32: Assuming (0)X , (1)X , (1)Z  are defined as in Definition 2, then 

(0) (1) (1)( ) ( ) ( ( ))x k az k b z k + =                                                                  (4) 

which is nonlinear grey Bernoulli model, recorded as NGBM (1,1), its whitening equation is 

Proc. of SPIE Vol. 13395  133950D-2



 

 
 

 

 

 

(1)
(1) (1)( )

( ) ( ( ))
dx t

ax t b x t
dt

+ =                                                                        (5) 

Obviously, the cumulative order and grey derivative order of traditional grey Bernoulli models are limited to first order, 

and the model structure does not consider time factors and historical value changes, making it difficult to flexibly 

simulate sequence features. Based on this, we propose the time power conformable fractional derivative nonlinear grey 

Bernoulli model. 

Definition 4: Assuming (0)X  is defined as in definition 2,  ( ) ( ) ( ) ( )(1), (2), , ( )r r r rX x x x n=  is an r order−  accumulation 

generated sequence of (0)X , where 
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Definition 5: Assuming (0)X , ( )rX  are defined as in definition 2, then 

( (( ) ( ) ( )

0 ( ) ( ) ( )[ ( )] , 0,1 , 0,p r r rT x t ax t b t c x t p t T + =  +                                                  (7) 

is whitening differential equation of the time power conformable fractional derivative non-linear grey Bernoulli model. 

Where a  represents the development coefficient, b t c +  is the time power term, b  denotes the coefficient of the time 

power and c  stands for the adjustment parameter. 

According to Lemma 1, equation (7) can be expressed as: 
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Multiply both sides of the above equation simultaneously ( )[ ( )]rx t − , we can obtain 
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By simplifying the above formula with ( ) ( ) 1( ) [ ( )]r rQ t x t −= , we can obtain 
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By approximating derivatives through backward differentiation 
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And 
1 2 3(1 ), (1 ), (1 ),a b c     = − = − = −  ( ) ( )rG k  is set as the trapezoidal approximation of sequence ( ) ( )rQ k . We can 

obtain the discrete form of equation (9) 

( 1) 1 ( ) 1 1

1 2 3( ) ( )r p r p pQ k k G k k k  − − + − −+  =  +                                                 (10) 

We refer to equation (10) as the time power conformable fractional derivative non-linear grey Bernoulli model, denoted 

as CFNGBM(p,1). 

Assuming (0)X , ( )rX  are defined as in definition 2, m  is the number of modeled samples, the parameter estimation of the 

CFNGBM(p,1) model can be obtained as follows: 

1

1 2 3
ˆ ˆ ˆˆ ( , , ) ( )u B B B Y     − = =                                                                  (11) 

where  
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2.3 Solution of the CFNGBM(p,1) model 

If (0,1]p , and 
1 2 3
ˆ ˆ ˆˆ ( , , )u    =  is identification values of CFNGBM(p,1) model parameter columns and under the 

condition that the initial value condition ( ) (0)ˆ (1) (1)rx x=  is met, then when 2,3, , ,k m= , the discrete iteration time 

response equation and final restoration expression of CFNGBM(p,1) are as follows. 

(I) The discrete iteration time response equation of CFNGBM(p,1) model is 

( ) ( )

1 2 3
ˆ ˆ( ) ( ) ( 1) ( ) ( )r rQ k h k Q k h k h k=  − + +                                                         (12) 
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(II) The final reduction expression of the CFNGBM(p,1) model is 
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3. PARAMETER OPTIMIZATION AND MODEL EVALUATION 

3.1 Extrapolation optimization mechanism 

From the model’s time response, it is evident that the undetermined parameters directly influence the predictive accuracy 

of CFNGBM (p,1). Therefore, it is necessary to establish an optimization model to optimize the parameters. However, 

traditional optimization strategies based on a single training set often lead to overfitting, significantly affecting the 

model’s generalization ability. To address this issue, this paper proposes an extrapolation optimization mechanism, 

dividing the dataset into three parts: (1) the training dataset, (2) the extrapolation optimization dataset, and (3) the testing 

dataset. By utilizing the union of the training set and extrapolation set for parameter optimization, the optimization 

process not only simulates the fitting process but also simulates the prediction scenario. This optimization mechanism helps 

reduce overfitting and greatly enhances model effectiveness. The specific improvement mechanism is shown in Figure 1. 

 

Figure 1. Principle of improved extrapolation parameter optimization mechanism. 

3.2 Evaluation indicators 

To evaluate the predictive performance of the grey model, we chosen evaluation metrics include the absolute percentage 

error (APE) and mean absolute percentage error (MAPE). The specific formula is as follows: 
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Proc. of SPIE Vol. 13395  133950D-4



 

 
 

 

 

 

1

1

1

1
( )

1
( )

1
( )

m

i

l

i m

n

i l

TMAPE APE k
m

EMAPE APE k
l m

PMAPE APE k
n l

=

= +

= +

=

=
−

=
−







 

where, m  denote the training set size, l m−  denote the extrapolation size, and n l−  denote the testing set size. Then we 

set the training MAPE error as TMAPE, extrapolation optimization MAPE error as EMAPE, and predictive MAPE error 

as PMAPE separately. 

Further a nonlinear programming model is established as follows: 
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Due to the nonlinearity in equation (13), conventional methods for solving it are challenging. In this paper, the particle 

swarm optimization algorithm is employed to rapidly obtain the model parameters. 

4. CASE ANALYSIS OF CRYSTAL SILICON INDUSTRY 

4.1 Research significance and data collection 

As a vital component of the crystalline silicon industry, photovoltaic glass production directly impacts the production 

progress of photovoltaic components and the operation of the supply chain. Through time-series forecasting analysis of 

photovoltaic glass production, enterprises can further optimize production planning and scheduling arrangements. This 

ensures a balance between production capacity and market demand, mitigating the risk of overcapacity or shortages. 

Moreover, enterprises can strategically manage inventory levels to prevent excessive or insufficient stockpiling, thereby 

enhancing production efficiency and resource utilization.  

To validate the effectiveness and practicality of the CFNGBM(p,1) model, this section establishes the traditional 

NGBM(1,1) model2, DFNGBM(1,1,α) model9, CFGBM(μ,1) model18, and CFNGBM(p,1) model. The case study of 

monthly production of photovoltaic glass was conducted, with data sourced from the Shanghai Nonferrous Metals 

Information Network (https://data-pro.smm.cn/). This section conducts a case analysis using monthly photovoltaic glass 

production data from January 2022 to March 2024.  

4.2 Photovoltaic glass production 

Two experiments are conducted in total: the conventional experiment involving fitting and prediction, and the 

extrapolated optimization experiment. The raw data is recorded in https://github.com/Zhou-YunSen/Photovoltaic-glass. 

For the conventional experiment, the original dataset had a sample size of 27, with 24 samples used for the testing set 

and 3 samples for the validation set. In the hyperparameter optimization experiment, the fitting dataset comprised 21 

samples, the extrapolation testing set comprised 3 samples, and the prediction testing set comprised 1 sample. In order to 

clearly demonstrate the experimental errors of each model, Figure 2 presents the simulation error and prediction error of 

all models under conventional experiment. Table 1 displays the conventional experiment results of each model on 

monthly photovoltaic glass production data.  
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Figure 2. The simulation error and prediction error of all models under conventional experiment. 

Table 1. Conventional experiment results of each model on monthly photovoltaic glass production data. 

MAPE Sample size NGBM(1,1)2 DFNGBM(1,1,α)9 CFGBM(μ,1)18 CFNGBM(p,1) 

Simulation MAPE 24 4.4884 4.3010 4.8285 3.6316 

Prediction MAPE 3 10.2495 28.8895 13.7811 9.7308 

In this experiment, particle swarm optimization (PSO) algorithm is utilized for parameter tuning. The number of particles 

is set to 500, with inertia weight, cognitive random coefficient, and social random coefficient set at 0.2, 0.6 and 0.6, 

respectively. The maximum number of iterations is set to 300, and the number of parameters to be optimized can vary 

depending on the model requirements. In routine experiments of case studies, the optimal value of the   parameter for 

the NGBM model is 0.0836. For the DFNGBM(1,1,α) model, the optimal values of parameters r ,   and   are 1.0821, 

1.7992 and -2.2369, respectively. Meanwhile, for the CFGBM(μ,1) model, the optimal values of parameters   and   

are 0.8541 and 0.2214, respectively. Lastly, for the proposed CFNGBM(p,1) model, the optimal values of parameters p , 

r ,  , and   are 0.3412, 0.7400, 1.8812 and 0.2077 respectively. 

Analysis of the data in Table 1 reveals a significant disparity between the model’s predictive accuracy and its fitting 

precision. Clearly, when solely prioritizing fitting precision, prevalent discrepancies between predictive and fitting errors 

are often encountered and the risk of overfitting is notably high. Therefore, it is imperative to consider improvements to 

the current optimization mechanism. Furthermore, the enhanced stepwise optimization mechanism is embedded into the 

existing optimization fitting algorithm for experimentation. The specific MAPE results for different stages of each model 

are presented in Table 2. In Extrapolation experiments of case studies, the optimal value of the   parameter for the 

NGBM model is 0.2736. For the DFNGBM(1,1,α) model, the optimal values of parameters r ,  and   are 0.5779, 

1.2169 and 0.0133, respectively. Meanwhile, for the CFGBM(μ,1) model, the optimal values of parameters   and   are 

0.8990 and 0.3499, respectively. Lastly, for the proposed CFNGBM(p,1) model, the optimal values of parameters 

p , r ,  and   are 0.8910, -0.6024, -1.1603 and 3.4733, respectively. In order to clearly demonstrate the experimental 

errors of each model, Figure 3 presents the comparison between conventional simulation errors and extrapolated 

simulation errors. Figure 4 presents comparison of conventional prediction error and extrapolation prediction error. 

The analysis of the experimental results from Table 2 reveals that the incorporation of a hyper-step optimization 

mechanism into the prediction algorithm significantly reduces the phenomenon of model overfitting. Moreover, this 

improved mechanism can be applied not only to the model proposed in this paper but also to other traditional grey 

forecasting models, demonstrating high practicality. Furthermore, the CFNGBM(p,1) model proposed in this paper 

exhibits the highest experimental accuracy both in fitting and extrapolation stages, enabling precise prediction of 

monthly production of photovoltaic glass. 
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Table 2. Extrapolated experiment results of each model on monthly photovoltaic glass production data. 

Time Raw data NGBM(1,1)2 DFNGBM(1,1,α)9 CFGBM(μ,1)18 CFNGBM(p,1) 

2022-01 100.4 100.4000  100.4000  100.4000  100.4000  

2022-02 94.9 107.1894  93.8073  89.3734  99.1598  

2022-03 103.8 115.1089  107.4203  102.0738  104.6374  

2022-04 115.4 121.7245  117.8913  112.8659  112.6936  

2022-05 137.2 127.7555  125.9698  122.4032  121.1098  

2022-06 133.5 133.4847  132.9213  131.0504  129.3819  

2022-07 135.6 139.0546  139.3756  139.0296  137.3829  

2022-08 141.8 144.5482  145.5889  146.4870  145.0849  

2022-09 161.2 150.0184  151.6627  153.5243  152.4906  

2022-10 151.9 155.5020  157.6414  160.2156  159.6112  

2022-11 162.5 161.0255  163.5484  166.6165  166.4595  

2022-12 167.8 166.6094  169.3991  172.7701  173.0467  

2023-01 156.7 172.2701  175.2050  178.7106  179.3818  

2023-02 169.7 178.0208  180.9754  184.4653  185.4710  

2023-03 195.3 183.8731  186.7184  190.0569  191.3177  

2023-04 204.2 189.8370  192.4405  195.5040  196.9230  

2023-05 205.1 195.9214  198.1476  200.8225  202.2851  

2023-06 207.4 202.1346  203.8447  206.0257  207.4000  

2023-07 216.5 208.4840  209.5362  211.1251  212.2610  

2023-08 223.3 214.9771  215.2262  216.1307  216.8591  

TMAPE (%)  5.9591 3.6612 4.0692 3.5778 

2023-10 227.02 228.4210 226.6148 225.8940 225.2162 

2023-11 220.56 235.3851 232.3193 230.6660 228.9427 

2023-12 235.07 242.5193 238.0342 235.3732 232.3405 

EMAPE (%)  5.1021 4.9652 4.8680 4.6624 

Simulation MAPE  4.3461 3.3117 3.6336 3.4779 

2024-01 234.76 249.8297 243.7617 240.0210 235.3838 

2024-02 222.7 257.3228 249.5039 244.6137 238.0414 

2024-03 243.61 265.0049 255.2628 249.1561 240.2757 

PMAPE (%)  3.7546 3.8904 3.3306 2.0762 
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Figure 3. The conventional simulation error and extrapolated 

simulation error of all models. 

Figure 4. The conventional prediction error and extrapolated 

prediction error of all models. 

5. CONCLUSION 

This paper presents a conformable fractional-order derivative of the time-varying grey Bernoulli model, deriving 

analytical expressions for the discrete iteration of the time response function. It extends the application of grey theory to 

fractional-order systems and nonlinear science. Furthermore, an extrapolation optimization mechanism is proposed and 

embedded into the construction of various grey prediction models. In contrast to conventional parameter optimization 

mechanisms, the proposed extrapolation optimization can effectively mitigate overfitting caused by a simple training set 

in a straightforward manner. Ultimately, the CFNGBM(p,1) model is applied to the photovoltaic glass monthly 

production data in the crystalline silicon industry chain, yielding excellent results. It is noteworthy that the extrapolation 

optimization training mechanism proposed in this paper can not only be applied to grey models and their theories but 

also has potential applications in areas such as black-box models like neural networks in the future. 
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