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ABSTRACT 

In the realm of single-cell transcriptomic sequencing, deep generative models have proven invaluable in capturing gene 

expression features. Nevertheless, technical challenges have introduced a notable presence of missing values in the data, 

leading to the observed “dropout” phenomenon within the gene expression matrix. This phenomenon is characterized by 

numerous technical zero values, potentially stemming from data noise. To address this issue, interpolation algorithms 

leverage known values to infer and fill in these “dropout” occurrences, effectively mitigating data incompleteness and 

aiding in the preservation of biological information within the samples. Relevant studies suggest that interpolation 

algorithms play a crucial role in enhancing the reliability and completeness of data in the context of feature extraction 

within deep models. To contribute to this area, this research introduces scDIVAE, a framework encompassing two deep 

generative models. The first model is dedicated to interpolating gene data, sharing information among similar cells to 

eliminate noise and the “dropout” phenomenon. The second model employs a natural language topic model for data 

feature extraction. This methodology not only improves the clustering accuracy of deep generative models but also 

effectively eliminates batch effects. 
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1. INTRODUCTION  

Single-cell sequencing technology holds promising prospects in the biomedical domain, aiding a comprehensive 

understanding of cellular functionalities and heterogeneity1. The utilization of scRNA-seq has significantly advanced 

research in biological processes and human diseases, leading to a paradigm shift in genomics. In experiments, scRNA 

data often represent high-dimensional sparse genomic data, where over 80% of the values are missing (zero values). 

These undetectable zero values are termed as “dropout”2. The “dropout” phenomenon is prevalent in single-cell RNA 

sequencing data, stemming from detection limitations or instrument malfunctions, resulting in a plethora of missing 

values, posing challenges to data integrity and reliability. During the training of deep learning models, these missing 

values can potentially affect the stability and predictive capabilities of the models. Hence, specialized modeling 

techniques and data handling strategies are essential to rectify data incompleteness, consequently enhancing the models’ 

performance and interpretability. 

2. RELATED WORK 

In recent years, the academic community has proposed multiple imputation algorithms to tackle the prevalent “dropout” 

phenomenon observed in single-cell RNA sequencing (scRNA-seq) data. An influential contribution comes from van 

Dijk et al., who introduced MAGIC3. This method relies on a Markov affinity matrix and exhibits exceptional 

performance in reconstructing gene relationships and other structural aspects within scRNA-seq data. Another 

noteworthy imputation algorithm is DrImpute4, which leverages clustering techniques. DrImpute excels in imputing 

scRNA-seq data, particularly in distinguishing between missing zero values and genuine zero values. These imputation 

algorithms, including MAGIC and DrImpute, focus on various aspects of cellular interaction or model inference to fill in 

missing values within scRNA-seq datasets. While these algorithms have demonstrated effectiveness in enhancing the 

quality of original datasets and preserving biological differences, a significant challenge arises due to their higher time 

complexity. This complexity limits their practical application, especially given the continuously expanding volume of 

single-cell sequencing data. The Deep Count Autoencoder network (DCA)5 presents a tailored imputation algorithm 

specifically designed for scRNA-seq data. DCA concentrates on addressing the “dropout” phenomenon occurring 
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between genes and cells by employing a zero-inflated negative binomial noise model. By addressing issues related to 

data count distributions, over-dispersion, and sparsity, DCA aims to reconstruct omitted values within large-scale 

datasets. Consequently, it provides a more precise depiction of the characteristics and correlations within single-cell 

RNA sequencing datasets. 

While imputation algorithms play a crucial role in mitigating noise and addressing the “dropout” phenomenon in data, 

relying solely on these techniques for the original data fails to significantly enhance model performance. This limitation 

arises from challenges in model transferability, interpretability, scalability issues, and difficulties associated with batch 

effects. In recent years, researchers have proposed various deep models based on the Variational Autoencoder (VAE)6 to 

conduct large-scale comprehensive analyses of single-cell RNA sequencing (scRNA-seq) data. Models such as scVI7 

consider library size and batch effects, while scVAE-GM8 modifies the prior distribution of latent variables in VAE and 

introduces classification latent variables for cell clustering. LDVAE9 incorporates a linear decoding layer during model 

training to enhance interpretability. Auto-cell10 combines graph embedding and probabilistic deep Gaussian mixture 

models for inferring the distribution of high-dimensional sparse scRNA-seq data. Despite their ability to effectively 

extract features and identify patterns within the data, VAE-based models lack interpretability, necessitating further 

analysis to decipher the significance of model parameters. 

This paper introduces scDIVAE, a dual-depth model that combines a Variational Autoencoder (VAE) with a deep neural 

network-based imputation algorithm, leveraging the effectiveness of VAE in extracting features and identifying patterns 

from high-dimensional sparse genomic data. The core architecture comprises two key components: a deep neural 

network-based imputation model for interpolation and recovery of data, addressing missing or sparse occurrences, and a 

deep generative model based on VAE for feature extraction and cell clustering. Initially, scDIVAE employs a divide-

and-conquer approach, constructing multiple sub-neural networks with dropout layers to learn patterns within the data. 

This process aims to eliminate noise from the cell count matrix and fill in “dropout” data, enhancing data quality for 

subsequent input into deep models. Following preprocessing involving noise elimination, the data is fed into a 

transferable neural network-based encoder and an interpretable linear decoder. These components compute embedding 

vectors for cells, enabling downstream tasks such as clustering, differential expression analysis, and enrichment analysis. 

By utilizing a dual-depth model, this paper addresses deficiencies in traditional models’ feature extraction capabilities, 

enhancing the generalization of deep learning models and overcoming limitations in local feature extraction abilities typical 

in conventional deep models. The model inputs interpolated gene expression data, obtaining highly interpretable feature 

embedding vectors, thereby improving clustering precision within the deep model and effectively removing batch effects. 

3. METHODS 

Before delving into the intricacies of the complexity inherent in our proposed model, scDIVAE, it is necessary to 

recognize the significant contributions made by various existing deep learning models in addressing the complexities 

inherent in the analysis of single-cell RNA sequencing (scRNA-seq) data. These models have laid a solid foundation for 

our approach, which strategically employs a dual-depth architecture to seamlessly integrate imputation and generative 

modeling, thus overcoming inherent limitations in traditional methodologies. To gain a thorough understanding of our 

innovative framework, we will now proceed to provide a detailed exposition of the scDIVAE architecture. 

3.1 Overall design 

The overall architecture of scDIVAE encompasses two pivotal models. The first key model is the DCA (Deep Count 

Autoencoder) model, specifically designed for imputing single-cell RNA sequencing data. This model aims to address 

the “dropout” phenomenon, where a substantial number of missing values exist in the gene expression matrix due to data 

noise. The DCA model employs a zero-inflated negative binomial distribution model, intending to reveal latent 

relationships between genes and cells while effectively handling the data’s excessive sparsity and sparseness. The second 

key model of scDIVAE is based on the Variational Autoencoder (VAE), with the topic modeling section utilizing a 

neural network to model samples in the latent space of single-cell RNA sequencing data and extract the probability 

distribution of topics. In single-cell RNA sequencing data, selecting Highly Variable Genes (HVGs) is a common 

strategy to identify genes with significant variations in the dataset. scDIVAE employs a criterion based on the variance-

to-mean ratio exceeding 0.5 for HVG selection.  

Figure 1 provides a clear depiction of the workflow of scDIVAE. Firstly, it identifies HVGs meaningful for subsequent 

analysis and undergoes data preprocessing, including regularization. Then, the DCA model is employed to complete the 

imputation task for single-cell data, addressing issues of excessive sparsity and the “dropout” phenomenon while 
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handling inconsistencies resulting from missing values. The imputed data fills in the missing values, thereby enhancing 

data integrity for more comprehensive and reliable downstream analyses. To handle the data more effectively, the DCA 

model divides genes into N random subsets, each containing S genes referred to as “target genes.” Each subset 

establishes a four-layer neural network model, including genes related to the target genes as the input layer, a fully 

connected hidden layer with 256 neurons, a 20% dropout layer to prevent overfitting, and an output layer for the target 

genes. Subsequently, scDIVAE inputs the imputed data into the VAE’s topic model. This model employs a word 

embedding method, inspired by the model design of scETM, to further decompose the gene distribution matrix into topic 

embedding and gene embedding matrices. This allows for a deeper exploration of the relationships between all genes and 

topics in the embedding space, where “topics” represent latent features or patterns in the data, reflecting specific 

characteristics or behaviors of cells in gene expression. The encoder in the topic model of scDIVAE is responsible for 

dimensionality reduction and calculating the topic distribution for each cell, which is valuable for tasks like cell 

clustering. Once the model is trained, the encoder effectively extracts features and performs tasks such as cell clustering. 

Simultaneously, the decoder attempts to reconstruct the topic distribution into an expression matrix in an interpretable 

manner, including topics and gene embeddings, as well as parameters for batch effect correction. The topic modeling 

section utilizes the softmax function to represent the topic distribution and employs the cross-entropy loss function to 

measure the cross-entropy between the generated topic distribution and the true data distribution. Experimental results 

indicate a significant impact on the performance of the topic model before and after data imputation. 

 

Figure 1. Overview of the scDIVAE framework. 

3.2 Eliminate batch effects 

scDIVAE utilizes a Variational Autoencoder as its foundational model, designed to acquire latent representations of the 

data. Its primary advantage lies in efficiently capturing the inherent distributional characteristics of the dataset. By 

projecting data onto a shared latent space, scDIVAE effectively mitigates batch effects, thereby enhancing both the 

interpretability and comparability of the data. This methodology retains biological variances within the dataset while 

minimizing noise stemming from batch effects. Compared to the scETM11 model, scDIVAE typically demonstrates 

superior clustering quality and consistency. 

3.3 Clustering and evaluation 

scDIVAE conducts cell clustering by extracting latent features and employing the Leiden clustering method12. 

Subsequently, it assesses the accuracy of the obtained clustering results in comparison to models such as scVI, LDVAE, 

auto-cell, scETM, and scETM+HVG. The evaluation of clustering performance in experiments relies on adjusted rand 

index (ARI) and normalized mutual information (NMI) scores, precisely measuring the performance of each model. 

3.4 Noise simulation evaluation 

In this paper, 10%, 30%, 50% non-zero data values are randomly set to zero following a Gaussian distribution. In this 

noise simulation evaluation, scDIVAE shows excellent robustness. Even under the extreme conditions simulated, the 
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model maintains excellent performance. These results strongly demonstrate that the model has an excellent ability to 

cope with highly sparse and noisy data, can effectively maintain its performance level and accurately capture the 

characteristics of the data. This further emphasizes the reliability and robustness of scDIVAE when dealing with real 

single-cell transcriptome data, which strongly supports its application in complex environments. 

4. RESULTS 

We conducted extensive experimental validations on scDIVAE, with a primary focus on clustering and batch effect 

removal. Through these experiments, we assessed the model’s performance in handling single-cell RNA sequencing 

(scRNA-seq) data and examined its accuracy at the cellular level in terms of clustering. Clustering analysis is a crucial 

task aimed at identifying potential cell subtypes or expression patterns within the data. By comparing scDIVAE’s 

performance in clustering, we validated its outstanding capability in extracting intrinsic structural features and cell 

subtypes from the data. 

Another key aspect of our investigation was batch effect removal, a common challenge in the analysis of scRNA-seq 

data. Batch effects can introduce inconsistencies in the data, affecting the accurate capture of real biological variations. 

Through experiments, we evaluated the effectiveness of scDIVAE in mitigating batch effects, ensuring that the 

embedding representations generated by the model exhibit improved transferability and robustness for subsequent analyses. 

These experimental validations were conducted to comprehensively understand the performance of scDIVAE in 

processing scRNA-seq data, providing a solid foundation for its application in biological research. We emphasize the 

model’s clustering capabilities and its resilience against batch effects, making it a powerful tool for handling complex 

single-cell datasets. 

4.1 Batch effect elimination results 

This study conducted batch effect removal experiments on seven datasets, including mouse pancreatic islets (MP), 

human pancreatic islets (HP), mouse liver (ML), human spleen (HS), human kidney (HK), mouse lung immune cells 

(MLI), and mouse synovial joints (MJ). It compared scDIVAE against five state-of-the-art models: scETM, 

scETM+HVG, scVI, LDVAE, and auto-cell. Additionally, UMAP visualization13 was applied to the dimensionality 

reduction results of scETM, scETM+HVG, and scDIVAE models. (The description of the dataset is detailed in Table 1) 

Table 1. Dataset description. 

ID Datasets 
Sequencing 

protocol 

Sequencing 

protocol 

Number 

of cells 

Number 

of gene 
Reference 

GSE84133 MP scRNA-seq 13 1886 14878 14 

GSE81076 HP scRNA-seq 14 8569 20125 15 

GSM5009539 ML scRNA-seq 10 2703 9776 16 

GSE151302 HK snRNA-seq 20 19985 27146 16 

GSE194058 MLI scRNA-seq 11 13172 32292 17 

GSE164430 HS scRNA-seq 6 7505 52025 18 

GSE151985 MJ scRNA-seq 7 2500 31065 19 

Figure 2 visually demonstrates the scenarios of cells of the same type across different batches. The results illustrate that 

the scDIVAE model exhibits the highest consistency among cells of the same type across different batches. In terms of 

cell type identification and batch correction, scDIVAE demonstrates outstanding performance by more effectively 

sharing information between similar cells, restoring connections between genes, and reconstructing associations among 

genes. Hence, it possesses a more significant ability for cell type characterization compared to the scETM and 

scETM+HVG models. 
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Figure 2. Batch effect elimination comparison. 

4.2 Unsupervised clustering analysis results 

During the experiments, the Leiden algorithm was employed to compare the cell embeddings generated by each model 

for cell clustering analysis. Multiple resolution values were attempted during the clustering process, and the best results 

for each model in terms of ARI and NMI were recorded. The title of each subplot in Figure 3 corresponds to the 

resolution yielding the highest ARI. The Leiden clustering results vividly demonstrate that utilizing the scDIVAE model 

for clustering output in the human pancreas dataset highly aligns with the predetermined cell type annotations 

(NMI=0.9503, ARI=0.9219). Its clustering performance significantly outperforms other models. 
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Figure 3. Unsupervised cluster comparison. 

This experiment conducted ten unsupervised clustering analyses for the six models across all datasets, and recorded the 

average of the highest ARI and NMI scores from the ten experiments as the final data in Table 2. The results indicate 

that, across the seven datasets, the scDIVAE model achieved the highest ARI and NMI scores in six datasets. Its 

performance on the human kidney dataset significantly outperformed the other five models, demonstrating its high-level 

clustering performance. Additionally, the experiment assessed the separability between different clusters to ensure each 

cluster distinctly represents a unique subset in the data. The clustering results of scDIVAE exhibited exceptional 

separability, with very low similarity between clusters. 

In the mouse pancreas dataset, both scVI and LDVAE models exhibited higher scores, whereas their performance was 

average on other datasets. The auto-cell model showed lower scores across all datasets and took the most time when 

training on larger datasets. The scETM+HVG model initially preprocessed data by extracting highly variable genes 

(HVG), and then trained the data using the scETM model. This method enhanced clustering accuracy and yielded the 

best results on the mouse synovial joint progenitor dataset. Although the improved scETM model achieved higher ARI 

scores than the original scETM model on most datasets, it failed to converge when handling the mouse liver dataset 

(recorded as NA in Table 2). 

Table 2. Unsupervised clustering performance results. 

Models/Metrics Datasets 

MP HP ML HK MLI HS MJ 

scVI ARI 0.931 0.759 0.540 0.567 0.615 0.693 0.746 

LDVAE ARI 0.876 0.655 0.534 0.566 0.645 0.655 0.753 

auto-cell ARI 0.540 0.750 0.530 0.583 0.685 0.547 0.597 

scETM ARI 0.860 0.936 0.486 0.625 0.706 0.802 0.958 

NMI 0.756 0.901 0.508 0.805 0.781 0.701 0.923 

scETM+HVG ARI 0.903 0.931 NA 0.625 0.837 0.672 0.985 

NMI 0.849 0.892 NA 0.804 0.842 0.568 0.955 

scDIVAE ARI 0.923 0.940 0.819 0.628 0.843 0.759 0.988 

NMI 0.865 0.907 0.637 0.805 0.845 0.687 0.937 
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4.3 Analysis results of noise simulation evaluation 

In the dataset of mouse synovial joint progenitors, the models scETM, scETM+HVG, and scDIVAE demonstrated 

notable performance, detailed in Table 2. To assess the model’s data imputation capabilities, a noise simulation 

evaluation was conducted using a dataset comprising seven cell types of mouse synovial joint progenitor cells. Given the 

high-dimensional sparsity inherent in the single-cell dataset, 10%, 30%, and 50% of the non-zero data values were 

randomly converted to zeros following a Gaussian distribution to simulate real data loss scenarios. 

The first column of Figure 4 presents the Leiden clustering plot based on the highest ARI score, while the second column 

displays the distribution of cells within each batch in the clustering results. The third column exhibits the clustering 

effects and cell type distributions. Experimental results indicate that, regardless of a 10%, 30%, or 50% dropout rate, the 

scDIVAE model consistently achieved the highest scores, displaying imputations closer to true expression values. 

Comparing the results of the three models (Figure 4 and Table 3), it’s evident that scDIVAE excels in interpolation 

performance and feature extraction, displaying slightly superior overall performance compared to other models. 

     

Figure 4. Model results with dropout rate of 30%. 

Table 3. The score of the model at three dropout rates. 

Dropout rate scETM scETM+HVG scDIVAE 

10% ARI 0.8456 0.9457 0.9632 

NMI 0.8327 0.9146 0.9301 

30% ARI 0.9289 0.9670 0.9684 

NMI 0.8934 0.9263 0.9286 

50% ARI 0.7816 0.9545 0.9580 

NMI 0.7273 0.9145 0.9242 
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4.4 The results of differential expression analysis 

The experimental visualization of differential gene expression comprehensively portrays the gene expression levels 

across different datasets and distinct cellular clusters. Within the human pancreatic dataset, as depicted in Figure 5, the 

visualized outcomes revealed a pronounced enrichment of differentially expressed genes within cellular clusters such as 

beta, ductal, endothelial, and macrophage. This representation not only delineates the gene expression variations among 

these cellular clusters but also provides deeper insights into their substantial disparities in biological characteristics and 

functionalities. Specifically, the experiment visually showcases the presence of pivotal differentially expressed genes, 

emphasizing their specificity in expression across distinct cellular clusters. 

 

Figure 5. Differential expression results in the human pancrea dataset. 

These visualized outcomes augment our understanding of the gene expression characteristics within cellular 

subpopulations, offering an intuitive and credible basis. By identifying these highly enriched differentially expressed 

genes across various cellular clusters, the experiment delves deeper into the functional differentiation of human 

pancreatic cell populations and the molecular features among cellular subgroups, which holds significant implications for 

understanding cellular differentiation, developmental processes, and mechanisms underlying disease progression. 

However, despite the insights gained from the differential expression analysis, further functional validation and 

biological experiments are imperative to ascertain their specific biological relevance within pancreatic cell populations 

and to validate these findings in a broader context. 

5. CONCLUSION 

This study, based on single-cell sequencing data, explores the clustering analysis and batch effect removal performance 

following single-cell feature extraction using a dual-depth model. According to the experimental results, scDIVAE 
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demonstrates not only higher overall accuracy across various metrics and extensive validation methods, but also exhibits 

faster computational speed, and requires less computer memory. 

In terms of eliminating batch effects, the introduction of an adversarial loss function aims to mitigate the adverse impact 

of batch effects in data analysis, while maintaining the model’s ability to correct for these effects. The scDIVAE model, 

employing this adversarial learning mechanism, more effectively restores the correlations among genes. It demonstrates 

a more discriminative cellular type description compared to the models scVI, LDVAE, auto-cell, scETM, and 

scETM+HVG. Importantly, it retains the capability for batch effect correction, showcasing its robust performance in 

both cell type discrimination and batch correction benchmarks. 

In terms of denoising, the scDIVAE model employs reparameterized Gaussian distributions for sampling latent variables, 

allowing for an estimation of noise within the variational expectation. This approach effectively mitigates noise influence 

while maximizing the variational lower bound expectation. The optimization process adjusts model parameters, such as 

encoder weights, topics, and gene embeddings, through gradient backpropagation to enhance noise robustness in the data. 

This refinement enables the model to accurately capture genuine data features, free from the interference of noise. 

In conclusion, scDIVAE effectively restores missing gene expressions within single-cell data. Its neural network-based 

interpolation algorithm efficiently mitigates batch effects and noise, resulting in excellent preprocessing outcomes. This 

enhancement in data quality elevates the model’s performance in single-cell feature extraction tasks. 
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