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In addition to the usual conference presentations, the 2013 Mobile Computational Photography 
conference includes a “focal track" of peer-reviewed papers that appear in a special section of the Journal of 
Electronic Imaging. Here, we introduce these papers, using an extract from the Editorial5 accompanying the JEI 
issue. 

Many of the capabilities of mobile computational photography will likely leverage plenoptic (a.k.a. 
lightfield) camera capabilities. In the mobile setting, these will need to be built using micro-optic techniques, 
either arrays of miniaturized cameras or with arrays of microlenses. Wafer-level cameras, built using 
semiconductor processes, will become a key sensor technology. In their paper “Resolution and sensitivity of 
wafer-level multi-aperture cameras," Oberdorster and Lensch1 present an analysis of some of the ensemble 
optical properties of wafer-level cameras, with particular attention to controlling aberrations. 

Algorithmically, obtaining large-camera capabilities out of mobile computational platforms (particularly 
those based on plenoptic camera ideas) will require new processing approaches and algorithms. As advances in 
plenoptic rendering continue to be made, being able to effectively estimate depth (disparity) in a scene is 
emerging as a critical need. Krishnamurthy and Rastogi2 develop an approach to depth estimation that is 
particularly well-suited to plenoptic imagery in their paper “Refinement of depth maps by fusion of multiple 
estimates." 

On the one hand, mobile computational photography is about cameras. But these devices are much 
more than simply cameras: they are multipurpose mobile computing platforms that include technological 
features such as GPS, accelerometers, touch screens, etc. Many of these technologies can be leveraged and 
brought to help provide higher quality (and innovative) photographic capabilities. One such application is 
presented by Sindelar and Sroubek.

3
 Their paper “Image deblurring in smartphone devices using built-in inertial 

measurement sensors" uses the accelerometers and gyroscopes in a smartphone to determine the motion 
trajectory while a photo is taken, allowing the blur caused by that motion to be removed from the picture. 

Finally, in considering a hand-held device as a powerful computational imaging platform one can also 
consider other capabilities to add to the device to provide a more compelling user experience, such as a projector. 
In the paper “Compensating specular highlights for non-Lambertian projection surfaces," Kao et al.

4
 describe a 

portable platform that includes both camera and projector. With these two devices in the same platform, the 
camera can be used in closed-loop fashion to correct (and augment) the projected image. In this paper, Kao et al. 
address the issue of compensating for specular highlights in particular. 
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Abstract. The scaling limits of multi-aperture systems have been
widely discussed from an information-theoretical standpoint. While
these arguments are valid as an upper limit, the real-world perfor-
mance of systems for mobile devices remains restricted by optical
aberrations. We argue that aberrations can be more easily controlled
with certain architectures of multi-aperture systems, especially those
manufactured on wafer scale (wafer-level optics, WLO). We comple-
ment our analysis with measurements of one single- and one multi-
aperture WLO camera. We examine both sharpness and sensitivity,
giving measurements of modulation transfer function and temporal
noise, and showing that multi-aperture systems can indeed reduce
size without compromising performance. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.JEI.22.1.011001]

1 Introduction
In multi-aperture optics, a single optical system is replaced
by an array of optical channels side by side. In a single-aper-
ture system, its focal length and pixel pitch determine the rate
it samples object space. In a multi-aperture system, this rela-
tion can be broken up by interlacing the views of adjacent
channels so that they supersample object space. After cap-
ture, the channel microimages are assembled digitally to
obtain a continuous image. Using this principle, the system
thickness can be reduced while keeping sampling of object
space constant. When the optics is considered to be diffrac-
tion-limited, however, either sensitivity or effective resolu-
tion has to be sacrificed.1

On the other hand, when system thickness is reduced, lens
dimensions are reduced along with it. multi-aperture systems
are often realized with micromanufacturing techniques,
which are more accurate for lenses with small diameters
and sags, leading to better optical performance.

We examine the balance of these two effects using the
electronic cluster eye (eCLEY)2 as one example of a
multi-aperture system. The eCLEY uses supersampling to

reduce system thickness and lens dimensions. Addition-
ally, the total field of view of the system is divided; each
channel only images a small field of view.

After reviewing related work in this area (Sec. 2), we dis-
cuss performance scaling and manufacturing issues in Sec. 3.
Next, we treat the effects of image reconstruction on sharp-
ness and noise (Sec. 4). We then compare the theoretical
results to the actual performance of the eCLEY using mea-
surements of the modulation transfer function (MTF) and the
temporal noise in Sec. 5. Finally, we compare the MTF with
a state-of-the-art single-aperture camera manufactured with
wafer-level optics.

2 Related Work
An early small multi-aperture system was TOMBO,3 which
uses a low number of identical channels with the same view-
ing direction. The same principle has also been applied to
macroscopic infrared focal plane arrays for remote sensing
applications.4 Flexible laboratory setups such as the
Stanford large camera array have been valuable to investigate
possible applications and configurations of multi-aperture
systems, as well as yielding practical insights on how to cal-
ibrate these systems.5 The eCLEY, in contrast, is specifically
designed for precise and cost-effective manufacturing with
microfabrication techniques and contains unique channels
with different viewing directions.

Supersampling with multi-aperture systems is a natural
extension of super-resolution from video sequences. Park
et al.6 have conducted a comprehensive review of existing
methods. Registration techniques as well as reconstruction
algorithms have been adapted to multi-aperture systems,
for example by Nitta et al.7 and Kanaev et al.8,9 However,
for images from real-world systems, simple shift-and-add
schemes preceded by calibration with sub-pixel accuracy
have remained popular, for example as reported by
Kitamura et al.10 An extended version of this type of scheme
is also used for reconstructing images from the eCLEY.11

Independent of the applied reconstruction algorithm, the
theoretical performance limits of thin optical systems were
comprehensively investigated by Haney.1 He concludes
that multi-aperture systems with reduced length can only
match the performance—sensitivity and resolution—of
single-aperture systems at a significant increase in footprint.

Paper 12337SSP received Sep. 3, 2012; revised manuscript received Nov.
21, 2012; accepted for publication Dec. 4, 2012; published online Jan.
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Measurements of both sensitivity and resolution from
experiments are rare. Figures for peak signal-to-noise ratio
comparing ground truth with a simulation are stated most
frequently, along with example images from the actual sys-
tem. Portnoy et al.4 give contrast measurements for a single
frequency along with the signal-to-noise ratio.

We provide an analysis of the sensitivity and the resolu-
tion of multi-aperture, systems. We confirm our theoretical
model with measurements of the MTF and the temporal
noise of a specific system, the electronic cluster eye,
which is described in Sec. 3.

3 Scaling in Multi-Aperture Systems
In this section, we discuss scaling in general multi-channel
systems. As we will see with the example of the eCLEY,
there are two aspects to any multi-aperture configuration
that have different impacts on system volume and
performance.

The eCLEY is based on the principle of interlaced tiles, as
introduced in Ref. 2. Each optical channel of the eCLEY has
a small field of view (FOV) and a unique viewing direction.
The FOVs of adjacent channels overlap, together creating a
larger FOV (Fig. 1). Their viewing directions are carefully
tuned, so that pixels of one channel sample object space
inbetween pixels of the adjacent channels (Fig. 2). In prac-
tice, one pixel does not have a discrete viewing direction; it
integrates light over a solid angle. The implications are dis-
cussed in Sec. 3.2.

These two aspects of the concept serve specific purposes:

• Segmenting the system FOVs into smaller channel
FOVs reduces the field each channel has to image.
Aberrations can be controlled with a less complex
lens system, reducing cost and making manufacturing
easier and less prone to degradation because of
tolerances.

• Interleaving the tiles achieves supersampling of object
space and is responsible for reducing the effective focal
length of the system, which is the lower limit to
thickness.

Both aspects act in concert to decrease lens diameters.
Interleaving achieves this goal directly, because at the
same F-number, a smaller focal length leads to smaller
lens diameters. Segmentation achieves the same goal indi-
rectly, as less complex lens systems tend to have smaller
lens diameters: The further away a lens is from the aperture
stop, the larger it has to be to avoid vignetting of marginal
rays. The more lenses a system has, the larger the axial extent
of the system, leading to large lenses far away from the
aperture.

We now investigate how multi-aperture systems compare
to single-aperture systems in terms of light collection effi-
ciency, resolution and physical size. For better clarity, we
treat the effects of segmentation and supersampling
separately.

3.1 Light Collection
First, we determine the light collection efficiency of a single-
aperture system. Consider a setup with a scene emitting the
radiance L, a lens with diameter D and effective focal length
f, and an image sensor [Fig. 3(a)]. The sensor has the extent
w × h, divided into nx × ny pixels with a pitch of px. From
the image plane, the lens subtends a solid angle of

Ω ¼ πðD∕2Þ2
f2

:

As the aperture takes on the radiance of the scene,12 the
sensor receives an irradiance of

I ¼ ηlens · Ω · L;

with the lens having an optical transmittance of ηlens. Each
pixel integrates I over its photosensitive area, collecting a
radiant flux of

Φpix ¼ γpix · p2
x · I;

where γpix is the fill factor of the pixel. The total flux col-
lected by the sensor is

A B C D

AB CDBC

Fig. 1 The field of view of the (eCLEY) is segmented into multiple
channels, each viewing a part of the total FOV. The FOVs of the chan-
nels overlap. Here, three channels are shown in different colors, in
one dimension. The actual eCLEY has 17 × 13 channels.

2 31

Fig. 2 The viewing directions of the eCLEY channels are adjusted
carefully so that the pixels of one channel sample object space
between the pixels of the adjacent channel. Three channels shown
in one dimension, with seven pixels for each channel. The eCLEY
has 39 × 39 pixels per channel.

Journal of Electronic Imaging 011001-2 Jan–Mar 2013/Vol. 22(1)

Oberdörster and Lensch: Resolution and sensitivity of wafer-level. . .

SPIE-IS&T/ Vol. 8667  866701-4



Φtot ¼ nxny · Φpix;

neglecting effects such as distortion or vignetting.
We discuss a supersampling multi-aperture system next

[Fig. 3(b)]. To decouple sampling rate from pixel pitch,
the single optical system is replaced by N × N channels
side by side, with the supersampling factor N. In case of
the eCLEY, the supersampling factorN is 2, though the num-
ber of channels is higher because the FOV is segmented.

Each channel is a scaled version of the original system
(see Ref. 2), so f 0 ¼ f∕N, D 0 ¼ D∕N and each system
retains the F-number of the original camera. Therefore, in
each system, Ω 0 ¼ Ω. Consequently, each pixel records
the same flux Φpix as in the single-aperture case. As the
system samples the same FOV (solid angle) as the original
system with the same sampling rate, the total amount of
samples—or pixels—stays the same. Therefore,

Φ 0
tot ¼ Φtot:

Next, we segment the FOV α of the camera into M ×M
channels [Fig. 3(c)]. In case of the eCLEY, M is 8 horizon-
tally and 6 vertically. The geometry of each of these channels
is identical to that of the original optical system: Both f and
D stay the same. The FOV of each channel is limited, how-
ever, by reducing the image size in each channel. The view-
ing direction of the channel is selected by introducing a
lateral offset between optical system and image. Again
neglecting distortion and vignetting, in each channel, partial
FOV is α∕M and image size is w∕M × h∕M. As sampling
rate and pixel size are kept the same, each channel now
uses nx∕M × ny∕M pixels. If either distortion or vignetting
are not corrected in the optical system, they affect single-
aperture and multi-aperture systems in the same way.

Because the focal length is still f and the aperture
diameter is still D, Ω remains the same and Φ 0

pix ¼ Φpix.
As the total amount of pixels in the system does not change,
Φ 0

tot ¼ Φtot.
In summary, both segmenting and supersampling multi-

aperture systems collect the same amount of light as sin-
gle-aperture systems, as long as the F-number and the
total photodetector area are kept constant.

3.2 Sharpness
In this section, we will first examine the effects of supersam-
pling on image sharpness. Segmentation of the FOV will be
of relevance in the course of the discussion.

By using supersampling, a digital camera can be made
thinner without sacrificing sampling rate in object space
and without requiring a smaller pixel pitch. To retain actual
optical resolution in object space along with sampling rate,
however, the MTF of the channels in image space has to keep
up with the sampling rate.

Supersampling multiplies the image plane sampling
frequency fS and the Nyquist frequency fNy by a factor
of N. Therefore, the MTF should now show significant
modulation up to f 0

Ny ¼ N · fNy. Consequently, it has to
improve considerably.

The MTF of a camera is the product of the MTF of the
lens and the sensor, where the sensor MTF consists of a geo-
metrical component and a component resulting from cross-
talk between pixels:

MTFS ¼ MTFO · MTFG · MTFC:

MTFG describes spatial integration over the photodetec-
tor. For square photosites, it is the Fourier transform of the
rect function with the width of the photosensitive area pp:

MTFGðfÞ ¼ sin cðπppfÞ.

The pixel pitch px stays the same. While we are still
free to choose a smaller pp, light sensitivity decreases
with photosensitive area, or p2

p. Therefore, we assume
MTFG to be constant.

Crosstalk depends on the chief ray angle of light incident
on the sensor and on sensor technology. Neither of them
changes for multi-aperture systems. Therefore,MTFC is con-
stant as well.

The burden of improving the system MTF is therefore
placed entirely on the optical MTF. As described by
Lohmann,13 if an optical system is scaled by the factor
1∕N, the area of an image point Ap scales as

ApðNÞ ¼ λ2F2 þ
�
1

N

�
2

ξ̄2; (1)

for light of the wavelength λ and with aperture stop number
F and the lateral aberration ξ (ξ̄2 is its Gaussian moment).

When diffraction is neglegible, the diameter of an image
point is

dPðNÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ApðNÞ

q
≈

1

N
ξ̄

and the resolution limit therefore scales linearly with the size
of the system. Supersampling with N scales each individual

Fig. 3 Geometric properties of a single-aperture system (a) and two
multi-aperture systems, supersampling (b) and segmenting (c) with
lens diameter D, focal length f , image height h, and field of view
α. The lens subtends an angle Ω at the image plane.
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optical channel of the multi-aperture system by 1∕N. Point
diameters are therefore scaled by 1∕N.

Segmenting the FOV also has beneficial effects. Many of
the Seidel aberrations depend on field height h.12 Field cur-
vature and astigmatism, for example, increase with h2.
Therefore, segmenting the FOV into M parts reduces aber-
rations accordingly.

However, quantifying the benefit exactly is not possible
so easily. The well-known scaling laws for Seidel aberrations
only apply to imaging with a single lens. In practice, aber-
rations are partially corrected with multilens systems, whose
behaviour is more complex. This is true even for low-cost
mass-market cameras for mobile devices. With a certain
amount of correction, higher-order aberrations cannot be
neglected any more; these aberrations also defy description
by simple scaling laws.

In conclusion, optical MTF is indeed improved consider-
ably by scaling. This is necessary to retain optical resolution
in object space. As an example on how this works out, Fig. 4
shows the MTF of a system with aberrations (N ¼ 1) and the
effect of scaling down this system (N > 1). First, only opti-
cal MTF is plotted on an absolute frequency axis (a). Optical
MTF is improved as expected for increasing N. However,
when the f axis is normalized to the sampling frequency
fS, which scales with N, improvement is less apparent
(b). When we include pixel MTF, system MTF is similar
for all N (c). Therefore, object-space sharpness of the super-
sampled systems is comparable to the original system.

Increasing N further still improves optical MTF, but pixel
MTF cancels this gain.

Enhancement to the optical MTF itself is limited by dif-
fraction, which is independent of system scaling. This is
illustrated in Fig. 4(d). Here, we used the same optical sys-
tem as in Fig. 4(a), but scaled it down by 4, so f is now
1 mm. Again, optical MTF is improved for N ¼ 2, but
improvement is limited by diffraction (dashed line). The
resulting object space sharpness for N ¼ 2 is lower than
the sharpness of the original system.

3.3 Manufacturing Tolerances
When manufacturing a lens system, deviations in lens curva-
tures, distances, decenter and tilt degrade the system perfor-
mance. When scaling a lens system down, deviations have to
be smaller as well, or performance is compromised. As a sim-
ple example, consider a single thin lens with focal length f
and diameter D positioned so that it focuses light from
point P onto an image plane (Fig. 5). When the lens is
moved from its correct image plane distance f by a deviation
Δs, defocus leads to an image point diameter dP ¼ Δs · D∕f.
The smaller the system, the smaller dP has to be to retain
sharpness. Accordingly, Δs has to be smaller as well.

The same is true for the focal length of the lens: For a
plano-convex lens, f is proportional to lens radius R,12 so
a deviation ΔR leads to a new focal length f 0 with
Δf ¼ f − f 0. Δf effectively is a defocus shift Δs, leading
to an image point diameter analogous to a lens shift.

Fig. 4 Scaling effects for a system with two optical surfaces and f ¼ 4 mm, F2.4, simulated on-axis MTF curves. (a) Optical MTF improves for
scaling the optical system down. Supersampling factors N ¼ 1 to 3; N ¼ 1 is the original system. Plotted on absolute frequency axis (cycles/mm).
(b) The same curves plotted on a frequency axis relative to the image-space sampling frequency f S , which scales with N. (c) Optical MTF multi-
plied with geometrical pixel MTF. (d) Improvement in optical MTF is limited by diffraction effects, shown by scaling the system down by a factor
of 4.
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For perspective, with current pixel technology, dP < 2 μm
is desirable. This requires a focus shift of less than
2dP ¼ 4 μm.

The ability to meet the required tolerances depends on the
technology that is used to manufacture and assemble the lens
components. A suitable technology for multi-aperture sys-
tems is wafer-level optics (WLO), as multiple lenses side
by side are manufactured and aligned in parallel.
Assembly of the lens components can be achieved with
the required micron precision.14

Critical, however, is precision during replication of the
lens components. Lenses are manufactured from certain pol-
ymers by molding and ultraviolet curing. During hardening,
these materials shrink significantly. The amount of shrink is
proportional to the lens volume. Lens volume grows with the
square of the lens radius and linearly with lens sag.
Therefore, small lenses with low sags are preferable.
Molding tools are adjusted to anticipate shrink; however,
shrink has a certain spread that is proportional to shrink
itself. The hardened lenses therefore still have form devia-
tions that scale with N3.

Using a multi-aperture architecture—either super-
sampling or segmenting—decreases lens diameters. For a
supersampling factor of N, lens diameter decreases by N,
lens sag also decreases by N and we can expect deviations
to decrease with the cube of N. Segmenting the FOV also
reduces lens diameters, having a similar effect on
deviations.

In conclusion, while tolerances have to be tighter for
scaled-down lens systems, the fact that small lenses can
be manufactured with less shrink makes it easier to meet
these tolerances. Therefore, sharpness of actual, mass-manu-
factured camera systems can benefit significantly from a
multi-aperture architecture. This result contradicts the theo-
retical analysis in Sec. 3.2, which suggested that multi-aper-
ture systems can at best reach a performance comparable to
single-aperture systems.

3.4 Volume
We already established that system thickness is reduced by
supersampling. In some applications, however, total system
volume is more relevant than thickness. Therefore, we now
examine how multi-aperture system volume V 0 compares to
that of a single-aperture system V. We again treat the two
different architectures (supersampling and segmented FOV)
separately. In both cases, we first derive the footprint of the
system. It is given by either sensor footprint Asens or total
aperture area Atot, depending on which one is larger. In the
single-aperture case, Atot is simply the area of the single
system aperture. The values for the multi-aperture system
are A 0

sens and A 0
tot, which is now the sum of all individual

aperture areas A 0. Next, we derive system height. In both
cases, system height scales with effective focal length f.
To f, a part of the optical system thickness hopt is

added, depending on system complexity and placement
of the principal planes. We disregard the thickness of the
image sensor, sensor carrier and casing, as these values
are small compared to the focal length and are not affected
by the system architecture.

Supersampling: As noted in Sec. 3.1, neither the pixel
pitch nor the total number of pixels on the sensor change.
Therefore, A 0

sens ¼ Asens. This is also true for A 0
tot:

A 0
tot ¼ N2A 0 ¼ N2π

�
D 0

2

�
2

¼ π

�
D
2

�
2

¼ Atot;

assuming circular apertures with diameter D. Therefore, sys-
tem footprint stays the same. f, in contrast, is reduced by a
factor of N. As the lens dimensions all scale with N,
h 0
opt ¼ hopt∕N. Therefore, h 0

tot ¼ htot∕N and V 0 ¼ V∕N. In
conclusion, a supersampling system is not only thinner,
but also has less volume than a single-aperture system.

Segmentation of FOV: Again, pixel size and number stay
the same, so A 0

sens ¼ Asens. However, the single-aperture with
area Atot is now replaced with M copies of the original aper-
ture. Aperture area therefore is increased:

A 0
tot ¼ M · Atot:

The proportion of Atot to Asens in a camera is approxi-
mately the proportion of the corresponding lengths:

Dsens

D
¼ 2f tan α

2
f
N

¼ 2N tan
α

2
:

Miniaturized cameras tend to have a large FOV. If we
assume N ¼ 2.8 and α ¼ 70°, Dsens∕D ≈ 4. Therefore, the
sensor width is larger than the lens diameter and system foot-
print is given by Asens for M ≤ 4.

Effective focal length is not affected. Reduced optical sys-
tem complexity in each channel, however, decreases h 0

opt

slightly. Therefore, system volume V 0 is smaller than V
for moderate segmentation of FOV, but increases with M2

for large M.
This analysis does not consider additional volume con-

sumed by the system casing, structures for suppressing
stray light or walls separating channels. The latter are needed
to prevent crosstalk between channels. In current systems
such as the eCLEY, structures for crosstalk suppression
do consume a considerable amount of space between chan-
nels. They therefore increase the total volume of the system
and lead to unused areas on the image sensor. For reducing
this waste of space and sensor area, very thin vertical or
slanted walls have to be manufactured. Techniques for
cheaply fabricating these structures are currently being
developed.

4 Reconstruction
In the last section, the theoretical and practical scaling char-
acteristics of multi-aperture systems were discussed. In the
next section, these characteristics are verified with measure-
ments. To compare the analysis with the measurements, we
have to consider that in a multi-aperture system, a multitude
of images have to be combined into a continuous image. This
image reconstruction step has effects on image sharpness and
alters the noise characteristics of the system. In principle,

Fig. 5 Image point diameter dP of a defocused optical system with
focal length f and lens diameterD, with the image planemoved byΔs.
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neither can be improved without negatively affecting the other.
As the focus of this publication lies on the scaling character-
istics of multi-aperture systems per se, we do not attempt an
exhaustive analysis of this topic. Instead, we quantify the
effects of a single, simple reconstruction scheme, a shift-
and-add algorithm with Gaussian interpolation. In this case,
the effect is a decrease in noise and a loss in sharpness.

4.1 Algorithm
We treat each recorded pixel as a measurement of the light
incident on the camera from a specific direction. The pixel
viewing directions are derived from the model of the optical
system; it includes effects such as geometric distortion. We
intersect each of these pixel viewing rays with a virtual
focal plane (Fig. 6). The intersection points of viewing
rays and focal plane form a two-dimensional cloud of mea-
surements, an irregular sampling of the scene (irregular
because of parallax and geometric distortion of the chan-
nels; Fig. 7). To render an image from this point cloud,
we create a regular sampling of the scene by interpolation.
For each pixel of the target image, contributions from the
nearest measurement points available are added, weighted
with the distance from the measurement coordinate to the
target pixel (Fig. 8).

From the distance r, the weight Wx;y;i;j of the neighbor
j, contributing to the target pixel at coordinates x and y,
is calculated as

Wx;y;i;j ¼ e−w·r
2
x;y;i;j ; (2)

where w is an adjustable filter width. The weightsWx;y;i;j are
normalized so that

P
Wx;y;i;j ¼ 1.

The algorithm is presented in full in Ref. 11.

4.2 Sharpness
Interpolation can be treated as a spatial filter. Calculating the
Fourier transform of the filter kernel yields the MTF of the
interpolation operation. The interpolation kernel is the con-
tinuous version of Eq. (2), the Gaussian

KðrÞ ¼ e−wr
2

;

again with the filter width w and the distance from target
pixel to measurement coordinate r, in units of pixels. The
effect is a loss in modulation at higher frequencies.

4.3 Noise
Each target pixel is calculated from the weighted mean of ν
measurements. If a value V is calculated as the weighted sum
of measurements mx;y;i;j with equal uncertainties σm,

σV ¼ σm ·
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
W2

x;y;i;j

q ;

Fig. 6 Viewing directions of the pixels of one channel of a multi-aper-
ture system (arrows), intersected with a virtual focal plane (points).
The points show how this channel samples object space on a specific
focal plane.

Fig. 7 Placing the measurement of multiple channels (four in this
case, shown in different colors) on a common focal plane according
to the distances of channels and focal plane creates an irregular point
cloud.

Fig. 8 To render an image from an irregular point cloud, a regular grid
is overlaid on the point cloud. Each of the grid intersections represents
a target pixel in the image. Each of the target pixels (black) is calcu-
lated by interpolating the nearest measurements from the point cloud
(grey).
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with the weights Wx;y;i;j. The weights are different for each
target pixel. They depend on the distance of the measurement
to the target pixel r and on the filter width w.

For the following analysis, we first assume uniform den-
sity of measurements. In one extreme case, the target pixel is
exactly on top of a single source pixel. Choosing a filter
width of w ¼ 2 and setting r ¼ 0 in Eq. (2), W 0

i ¼ 1 (not
normalized yet). Four other pixels are at the distance of
r ¼ 1 pixel, yielding W 0

i ¼ 0.13. Four further pixels are
at a distance of r ¼ ffiffiffi

2
p ¼ 1.4, yielding W 0

i ¼ 0.02.
Normalizing yields contributions of Wi ¼ 0.63, 0.08 and
0.01, respectively. Noise is consequently reduced by a factor
of 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.632 þ 4 · 0.082 þ 4 · 0.012

p
¼ 1.54. In the other

extreme, the target pixel is exactly between four source
pixels, each contributing equally. No other pixels contribute
significantly due to their large distance. Noise is decreased
by

ffiffiffi
4

p ¼ 2.
In conclusion, noise is decreased by a factor of about 1.54

to 2.

5 Results
In this section, to support the conclusions of the last section,
we compare one state-of-the-art single-aperture WLO cam-
era, the OmniVision CameraCube, with a WLO multi-aper-
ture system, the eCLEY. To verify sharpness, we directly
compare the MTF of these systems. Direct comparison
of the sensitivity of the two cameras is not useful, as
they employ different sensors with different pixel
pitches (1.75 μm versus 3.2 μm). The route taken is
described next.

5.1 Sensitivity
According to theory, the eCLEY should have the same sen-
sitivity as a single-aperture camera with the same aperture
F3.7. For verification, we took an image of a uniformly
lit target with the image sensor used in the eCLEY, with
a single-aperture 16-mm lens (Schneider Cinegon) attached
and set to F3.7. The same target was also recorded with an
eCLEY. To avoid linearity issues, the exposure time texp was
adjusted so that both cameras recorded roughly the same
mean value (DN) on the target area. The values recorded
and the corresponding exposure times texp were:

Cinegon eCLEY

Value 146 144

texp 3.3 ms 4.2 ms

The longer exposure time for the eCLEY suggests a lower
sensitivity (by a factor of 0.77). We suspected that this dis-
crepancy is caused by the way the eCLEY objective is
attached to the sensor. The clear epoxy filling the gap
between objective and substrate has a refractive index
close to that of the per-pixel microlenses on the sensor,
thereby rendering them ineffective.

We validated our suspicion by attaching a plane glass to
one half of the sensor, again filling the air gap with epoxy.
We then recorded the same target area with the treated sen-
sor, again imaging the target area with the Cinegon lens set
to F3.7. We measured values of 140 on the sensor half
without plane glass and 110 on the other half, yielding

a relative sensitivity γ ¼ 0.71. This figure also gives us
an estimate on the relative area of the photosensor on
each pixel. We assume a perfect efficiency of the pixel
microlenses and set the fill factor of the sensor pixels
to ηpix ¼ 0.71.

Sensitivity of the eCLEY consequently has to be adjusted
by a factor of 1.40, yielding an adjusted relative sensitivity
of about γ ¼ 1.1, higher than the single-aperture lens. The
new discrepancy is most likely caused by losses due to inter-
nal reflections in the Cinegon lens, which has more air-glass
surfaces than the eCLEY objective.

Note that the loss in sensitivity due to the loss of the per-
pixel microlenses is not inherent to multi-aperture systems or
WLO. The attenuation can be avoided by replacing the bot-
tom substrate with a spacer layer that introduces an air gap
between optics module and sensor.

5.2 Noise
As illustrated in Sec. 4.3, the reconstruction scheme that we
use interpolates measurements, which should reduce noise.
To verify this claim, we first established the image noise of
the sensor used in the eCLEY.

To this end, we recorded 100 images of a scene with a
wide dynamic range, using the eCLEY. The recorded images
contain microlens images with all values in the dynamic
range of the camera, from 0 to 255. As we are interested
in temporal noise, we evaluated the temporal behaviour of
each pixel. For each of them, the mean and the standard
deviation were calculated. Pixels were then distributed
into bins of integer values according to their mean. The
resulting distribution of standard deviation over image signal
is plotted on a log-log scale in Fig. 9.

We proceeded to process each of the recorded images
with our reconstruction algorithm, creating continuous
images from the raw images. Filter width w was set to
2.0. These processed frames were characterised pixel by
pixel as before, yielding another distribution of standard
deviations, this time including reconstruction. This distribu-
tion is also plotted in Fig. 9.

Comparing the plots shows that noise is attenuated by a
factor of 2.0, being at the top end of our prediction from
Sec. 4.3 and validating our model of the reconstruction
algorithm.

Fig. 9 Temporal pixel noise (standard deviation) of the sensor in the
eCLEY, unprocessed microlens image and reconstructed image
(processing filter width w ¼ 2.0).
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5.3 Sharpness
With the results from the previous Secs. 5.1 and 5.2, we
have a complete model of the eCLEY transfer function.
Figure 10 shows simulations of all components. On top,
the diffraction limit for F3.7 is plotted. The optical MTF
of the eCLEY central channel is quite close to this limit.
It is calculated from a ZEMAX model of the eCLEY objec-
tive lens.

Next, the contribution of the sensor is multiplied with the
optical MTF. From Sec. 5.1, we assume square photodiodes
with a width of

ffiffiffi
γ

p
· 3.2 μm ¼ 2.7 μm. The crosstalk was

modeled as a Gaussian and fitted to results from Refs. 15
and 16.

Finally, the reconstruction step is considered by multiply-
ing the filter kernel K to optical and sensor MTF, with filter
width w ¼ 2.0.

To validate this model, we measured three steps of the
image formation process: The optical MTF of a single
eCLEY channel, the MTF of a single channel including

sensor and the MTF of the complete system, including
reconstruction. Each measurement was carried out with
the slanted-edge method.17

The measurements (also plotted in Fig. 10) match the pre-
dicted MTFs quite closely, validating our model of the
eCLEY. In summary, we have shown that

• Microlens arrays can be manufactured with low toler-
ances, so that they closely match the simulated
performance;

• the image sensor plays a significant part in the total
MTF of a supersampling multi-aperture system,
because the photodiodes are larger than the virtual
pixel pitch; and

• the reconstruction algorithm reduces noise at the
expense of reduced sharpness.

Note that no calibration was necessary to align the micro-
lens images in the reconstruction step. The distributions of

Fig. 10 MTF of the eCLEY. From the diffraction limit downwards, one additional component is added to the simulation for each curve. The complete
system MTF is plotted at the bottom, with measurements confirming the model at several steps.

Fig. 11 MTF of OmniVision CameraCube and eCLEY. System MTFs plotted relative to the sampling frequency of each system.
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the pixels on the virtual focal plane were taken directly from
the ZEMAX model. This fact demonstrates the manufactur-
ing and alignment precision of the microlens array.

Finally, we compared the MTFs of the eCLEY and an
OmniVision CameraCube. Figure 11 shows the complete
system MTF of both systems. We normalized the frequency
axis on the image-space sampling frequency of each cam-
era, which is 1∕1.75 μm ¼ 571 cycles∕mm for the
CameraCube and 2 · 1∕3.2 μm ¼ 625 cycles∕mm for the
eCLEY. The eCLEY exhibits comparable sharpness at
reduced total track length.

Figure 12 compares two shots of an USAF test target
recorded with the eCLEYand the CameraCube. These photo-
graphs also demonstrate similar sharpness for both systems.

5.4 Volume
Despite having a larger pixel pitch (3.2 μm instead of
1.75 μm), the eCLEY has a shorter track length than the
CameraCube (1.4 mm instead of approximately 2.2 mm).
This is the result of 2× supersampling in the eCLEY
(N ¼ 2 × 2, in x and y), which cuts total track length in
half. Additionally, the eCLEY has only one optical surface
per channel instead of the two surfaces of the CameraCube,18

which also reduces thickness.
Footprint, on the other hand, is larger for the eCLEY,

being 6.8 × 5.2 mm compared to 3.2 × 2.8 mm. This 4×
increase in footprint is partly due to the larger pixel pitch,
partly a result of the segmentation of the FOV
(M ¼ 7 × 4, in x and y), as deduced in Sec. 3.4.

6 Conclusion
We provided an analysis of the sensitivity, resolution and
volume of two types of multi-aperture systems. Compared
to single-aperture cameras, systems which supersample
object space significantly reduce volume at constant sensitiv-
ity. Matching the resolution is challenging, but possible for
low supersampling factors N in cases where the optical sys-
tem is not diffraction limited. Systems that segment the FOV
increase footprint and volume, but simplify the optical
system, which helps reducing track length. Both principles
can be used in tandem to design cameras with lower track
length and sufficient sharpness, as demonstrated with our
measurements of the eCLEY.

In this analysis, we assumed monochrome sensors with-
out color filter arrays (CFAs). For a sensor with CFA, the

color channels are traditionally undersampled, potentially
leading to aliasing. This is a favorable premise for a super-
sampling multi-aperture system: with N ¼ 2, aliasing can be
avoided and, at the same time, track length can be halved.
Extending the discussion of this publication to color systems
therefore is a promising direction.

Finally, plenoptic cameras are in essence also multi-aper-
ture systems. In the focused plenoptic camera, multiple chan-
nels view overlapping parts of an intermediate, demagnified
image of the subject. Each channel has a limited field of
view; the sampling patterns of the channels are interleaved
so that the intermediate image is supersampled. This translates
into increased resolution, however, only when the combined
MTF of objective lens, microlens array and sensor is suffi-
ciently large.

In multi-aperture and plenoptic cameras, filtering can
regain sharpness at the price of increased noise. This is tradi-
tionally the subject of superresolution algorithms. Work in
this area has focused on aligning the multiple views of
the subject accurately and robustly, with the required sub-
pixel resolution. When the optical system is manufactured
with sub-micron precision, good alignment can be already
be achieved from the geometry of the design. Similarly,
the transfer function can be simulated with useful precision.
To examine whether the available data is sufficient to
increase sharpness without introducing artifacts would be
another interesting topic.
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Abstract. Computing depth maps from a stereo pair is a well-studied
problem of computer vision, and a large number of methods and cost
functions have been proposed. The methods have different strengths
and weaknesses and different error characteristics. That is, a pixel
could be assigned an erroneous depth value by some methods, but
other methods could assign the correct depth value to the same pixel.
We describe a method that can make use of multiple depth estimates
of low quality and fuse them, by trying to retain the correct depth val-
ues and rejecting the incorrect depth values, in order to obtain a more
accurate result. We observe that depth values of pixels located in
smooth areas of a depth estimate and depth values which survive
left-right cross validation tend to be more accurate. Our method
makes use of a reliability criterion-based upon the smoothness and
cross-validation of the depth estimates that allows us to patch the esti-
mates together and obtain a higher quality result. © 2013 SPIE and
IS&T. [DOI: 10.1117/1.JEI.22.1.011002]

1 Introduction
Computing depth maps from a stereo pair is a well-studied
problem of computer vision, but a completely satisfactory
solution is still elusive.1,2 The methods proposed are either
computationally demanding or the quality of the depth maps
is low. Many of the proposed methods for obtaining high
quality depth maps from a stereo pair formulate the problem
in terms of finding the global minimum of an appropriate
energy function. Global optimization techniques like co-
operative optimization,3 graph cut,4–6 or belief propagation7

are used to minimize the energy. However, the global opti-
mization techniques are computationally demanding, espe-
cially as the number of depth labels increase. Good results
have been obtained with some local methods8–10 and some
hybrid methods11 too, but implementing them in an efficient
manner is a challenge due to the large and adaptive support
windows that are required.

There has also been a significant amount of progress in
real-time or near real-time methods, with steadily improving
quality and performance.12,13 Many different matching cost
functions have also been proposed.14,15 Due to the availabil-
ity of a large number of stereo matching strategies with dif-
ferent error characteristics, it is fruitful to study if it may be
possible to blend the results of the existing methods and pro-
duce a depth map of higher quality. This aspect has not

received much attention in the recent years. Our results show
that fusion or blending methods can be used to significantly
enhance the quality of real-time depth estimation methods.

In this paper, we propose a method for fusing multiple
depth estimates, which makes use of a reliability criterion-
based upon the smoothness of the depth estimates.

2 Related Work
Some work on depth map fusion has been done in the area of
multiview three-dimensional reconstruction. In Ref. 16, sev-
eral depth estimates for a reference view are obtained by pro-
jecting the depth maps of each acquired view onto the
reference view. The weighted average of the depth estimates
at each pixel, based on the confidence values of the depth
estimates at each view, is used to combine the estimates. In
Ref. 17, the authors propose a confidence measure of a depth
estimate at each pixel, based on the shape of the cost aggre-
gation curve. They also propose a variation of the weighted
average method of Ref. 16 based on their confidence mea-
sure. These methods were originally proposed for fusion of
depth estimates obtained from different views, based on a
single depth estimation algorithm. To the best of our knowl-
edge, there has not been any study on whether these methods
can be adapted to the case where the depth estimates arise
from the application of different cost functions or algorithms.

Reference 18 uses depth estimates obtained using differ-
ent sizes of support windows in a variational framework to
produce a piecewise smooth depth map and a piecewise
smooth approximation of the input images. In Ref. 19, the
authors implicitly perform a fusion of depth values obtained
on the basis of different color segmentations of the input
image. They use a voting framework in which the
Epanechnikov kernel20 is used to find the mode of the differ-
ent depth estimates.

If a confidence value can be attached to each depth esti-
mate, fusion can also be achieved by using the confidence
values as data terms in a global optimization framework
like graph cuts4 or belief propagation.21 While a global opti-
mization framework may yield good results, it is computa-
tionally expensive. We restrict our study to local methods for
depth map fusion.

3 Combining Multiple Depth Estimates
We assume that the input images are rectified and the dispar-
ity range ½dmin; dmax� is known. LetDm ¼ maxðjdminj; jdmaxjÞ
be the largest absolute disparity. The images are assumed to
be in RGB color space, and the color values have been
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normalized to lie in the [0,1] range. In this paper, we use the
terms disparity and depth interchangeably.

Let dirv and disv, with i ¼ 1; : : : ; m bem initial depth maps
for the reference view and the second view, respectively.
These estimates could have been obtained by using different
methods. We also allow for the fact that the depth estimates
may not be complete and some pixels may not have a valid
depth estimate. We wish to obtain better quality depth maps
d̃rv and d̃sv for the reference view and the second view.

The presence of a significant variation in depth without a
variation in color between two neighboring pixels signals an
error in the depth estimate since neighboring pixels of similar
color are likely to belong to the same object. However,
neighboring pixels may have significant variation in color,
without a variation in depth since an object can have more
than one color.

The presence of many such errors in a neighborhood of a
pixel indicates that the depth estimate at that location is unre-
liable. The depth estimate usually looks very noisy in such
unreliable areas. We make use of this fact in the fusion proc-
ess by giving a lower weight to such noisy areas and a higher
weight to smooth areas.

In the following equations, we will use Iversonian bracket
notation,22 where given a predicate L, ½L� evaluates to 1 if
a predicate L is true and 0 otherwise. Let us consider a
depth estimate dirv of the reference image R. We say that
there exists a depth variation between two pixels p and r
if the difference in their depth estimates is larger than a
threshold δ

Di
rvðp; rÞ ¼ ½jdirvðpÞ − dirvðrÞj >¼ δ�: (1)

We say that there exists a color variation between two pix-
els p and r if the difference in their color values is larger than
a threshold τ

Cirvðp; rÞ ¼ ½kRðpÞ − RðrÞk >¼ τ�: (2)

LetN ðpÞ be a set of pixels with a valid depth estimate in a
neighborhood around p. Let n be the size of N ðpÞ. Then we
define the smoothness of the depth estimate dirv at p as

SirvðpÞ ¼ −
1

n

X
j∈N ðpÞ

1

sj

X
k∈MðjÞ

Di
rvðj; kÞð1 − Cirvðj; kÞÞ; (3)

whereMðjÞ is the set of four immediate neighbors of pixel j
with a valid depth estimate and sj is the number of pixels
in MðjÞ. The smoothness SirvðpÞ is a value between 0
and 1. It represents the fraction of pixels in a neighborhood
of p that do not exhibit a variation in depth without a varia-
tion in color.

The availability of depth estimates for the second view
provides us another set of depth estimates for each pixel of
the reference view, since we can project the depth of a pixel
in the second view to the reference view. The aforementioned
criterion for smoothness of a depth estimate applies to the
depth estimate of the second view as well.

Further, if a depth estimate dirv of the reference view at a
pixel p is cross validated by any of the m estimates djsv of the
second view, it increases the confidence of the estimate dirv
at p. Let d ¼ dirvðpÞ. Let q ↦ p denote that a pixel q from
the second view projects to p in the reference view, via the

depth estimate djsv of the second view. We can define the
cross-validation of the estimate dirv at p as

VpðdirvÞ ¼
8<
:

1 if

�P
m
j¼1

P
q↦p

½jdjsvðqÞ − dj < δ�
�

> 0

0 otherwise

:

(4)

Note that more than one pixel q from the second view can
project to p via a depth estimate due to errors or presence of
occlusions. The inner summation in the condition of Eq. (4)
takes this fact into account.

The smoothness notion and the cross-validation described
above allows us to attach a reliability value for each possible
depth value dmin ≤ d ≤ dmax at each pixel p of the reference
image in the following way

RpðdÞ ¼
Xm
i¼1

½dirvðpÞ ¼ d�SirvðpÞ þ
Xm
j¼1

X
q↦p

½djsvðqÞ

¼ d�SjsvðqÞ þ α
Xm
i¼1

½dirvðpÞ ¼ d�VpðdirvÞ; (5)

where α is a weighting factor.
The reliability valuesRpðdÞ for each disparity d are accu-

mulated and smoothed. The smoothing operation we use is
given by

GpðdÞ ¼
Xσ
i¼−σ

1

1þ jijRpðdþ iÞ; (6)

where σ is a parameter that is used to control the extent of
smoothing that is to be performed. The depth d for which
GpðdÞ is maximized is chosen as the depth value d̃ for
pixel p, provided Gpðd̃Þ is greater than a threshold κ.
Otherwise, we do not assign any depth value to pixel p.

3.1 Parameter Selection and Sensitivity
In our implementation, the parameter values used are δ ¼
Dm∕32, τ ¼ 0.05, α ¼ 1, κ ¼ m, and σ ¼ Dm∕17. We arrive
at these values from natural considerations as described
below.

The parameter δ of Eq. (1) is the threshold at which two
pixels can be said to have different depths. The value of this
parameter can be naturally thought of as a function of the
disparity range. If the range is small (say 16 disparities), a
difference of 1 is a significant depth difference whereas
when the disparity range is large, the threshold at which
the disparity difference gets significant is higher.

The parameter τ of Eq. (2) is the threshold at which two
pixels are said to have different colors. We have chosen a
very conservative value of 0.05 (which is 12.75 on an 8
bit per pixel grayscale image). This will ensure that all
color differences are certainly captured.

The parameter α in Eq. (5) controls the relative contribu-
tion of the smoothness term and the confirmation terms. We
have chosen a natural value α ¼ 1 that weights these terms
equally.

The value κ is a threshold below which we do not output a
disparity value. We have set it as m (the number of initial
estimates). The smoothed reliability values range from 0 to
3m, and the value of κ is at one third of the range. Decreasing
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(a)

c)

(i)

(m)

(c) (d)

κ increases the coverage at the expense of increased errors,
while increasing it decreases coverage at the expense of
increasing precision.

The value of parameter σ in Eq. (6) is the smoothing
kernel radius. Reliability values are computed for every dis-
parity value. They cluster around a few disparity values.
Smoothing allows us to take this clustering into account
and not be misled by significant but isolated reliability val-
ues. For instance consider a situation where reliability values

for a pixel p are clustered at Rpð10Þ ¼ 1, Rpð11Þ ¼ 5,
Rpð12Þ ¼ 6,Rpð13Þ ¼ 2, andRpð35Þ ¼ 7. Looking at reli-
ability values alone will make us choose the wrong disparity
value of 35, while clearly the disparity value d ¼ 12 is a
much better choice. The value of σ has been set equal to
twice the δ value. For 60 disparities σ ¼ 3.5.

We have not fine tuned the values for any particular data-
set to avoid the risk of over fitting. The results are not highly
sensitive to variations in the parameter values. With the

Fig. 1 A comparison of the various fusion methods on the aloe image. The images of the first row are depth estimates of the right view obtained by
(a) horizontal scan line, (b) vertical scan line, (c) ELAS,12 and (d) constant space belief propagation.23 The second row (e) to (h) are the corre-
sponding left view estimates. The images in the third row are the results of the fusion methods (i) median depth, (j) median of confidence, (k) the
method of Ref. 17, and (l) our method. The ground truth image (m) is given in the last row.

Table 1 Comparison of fusion algorithms. The table shows the percentage of pixels of the covered area differing from the ground truth by more
than 1. The inputs to the fusion algorithm are the results of the ELAS,12 constant space belief propagation,23 and horizontal and vertical scan line
methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 14.78 14.18 17.43 5.23 26.49 38.80 25.60 24.17

Median of costs 14.86 14.76 16.80 4.60 25.60 23.5 25.38 24.29

Confidence fusion 06.07 06.95 09.37 02.28 16.24 15.64 15.03 15.34

Our method 03.79 04.59 07.45 01.98 12.26 16.14 13.41 11.41
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chosen values, our method consistently outperforms the
confidence fusion method17 described in Sec. 4 and varying
the values gives slightly better performance in some images
while some others fare a bit poorer.

4 Evaluation
We have studied how our method fares in combining the out-
puts of a few different real-time stereo algorithms, as well as
its ability to fuse the outputs of different window-based, win-
ner-take-all methods. The algorithms we used in our
study are:

• The efficient stereo matching algorithm of Ref. 12.
• The constant space belief propagation algorithm of

Ref. 23.
• A scan line-based stereo matching algorithm. Each

scan line is segmented into areas of homogeneous
color. Each segment is assigned a single disparity.
Instead of the full disparity range, we first consider
a restricted set of the disparities previously assigned
to the neighboring segments and determine the dispar-
ity value with the smallest per pixel matching cost in
the restricted set. If it is less than a threshold τc, we
assign the value of that disparity to the entire segment.

If not, we choose the disparity in the full range, that
minimizes the per pixel matching cost of the entire seg-
ment. We run this algorithm independently on horizon-
tal scan lines as well as vertical scan lines. We have
used a value of τc ¼ 0.05.

Apart from the above algorithms, we also consider the
winner-takes-all outputs of adaptive window-based meth-
ods.24 We have used window sizes of 5 × 5, 7 × 7, and
9 × 9. Apart from L2 costs, we also consider the census
transform25 using a 9 × 7 window size.

Our choice of the algorithms and cost functions have been
motivated by the presence of fast real-time implementations
of the same.12,23,26

We have compared our method with the following fusion
methods:

• Confidence-based fusion. We implemented the confi-
dence-based fusion method described in Ref. 17. We
use the confidence measure CðxÞ of a depth estimate
d0 at a pixel x as described in Eq. (1) of Ref. 17,
namely

CðxÞ ¼
�X

d≠d0
e−ðcðx;dÞ−cðx;d0ÞÞ2∕σ2

�
−1
; (7)

Fig. 2 A comparison of the various fusion methods on the reindeer image. The images of the first row are depth estimates of the right view obtained
by (a) horizontal scan line, (b) vertical scan line, (c) ELAS,12 and (d) constant space belief propagation.23 The second row (e) to (h) are the cor-
responding left view estimates. The images in the third row are the results of the fusion methods (i) median depth, (j) median of confidence, (k) the
method of Ref. 17, and (l) our method. The ground truth image (m) is given in the last row.
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where cðx; dÞ is the matching cost for depth d at x. In
our implementation, we normalize all costs to lie
between 0 and 1. The depth estimates for the reference
view as well as the second view are used in the fusion
process by rendering the depth estimates of the second
view on to the reference view. We have set the value of
the parameters σ ¼ 120 as given in Ref. 17. In the
paper, the authors do not output a fused depth value
if it is supported by fewer than CThres number of in-
put depth maps. They use a value of CThres ¼ 5 when
15 input depth maps are provided. Accordingly, we use
the threshold value CThres to be 1∕3 of the total number
of input depth estimates.

• Median-value-based fusion. At each pixel, the depth
estimates of the reference view and the rendered depth
estimates of the second view onto the reference view
are accumulated and the median value is chosen as the
fused depth value. We have also considered using the
depth corresponding to the maximum value of the con-
fidence measures of the depth estimates using Eq. (7).

5 Results
We have tested our fusion method on various images of the
Middlebury dataset, as well as other real world images. It is
able to significantly decrease the errors in depth estimates as
compared to the inputs. We tabulate the errors in the fused

depth map as a percentage of the pixels for which a disparity
estimate has been output by the fusion algorithms, as well as
the percentage of image area that finally gets a fused depth
estimate. We also performed better than the methods we
compared against. The fusion methods tabulated from top to
bottom are

• Median of depths. The median value of all the input
depth estimates at each pixel is used as the fused depth.

• Median of costs. The input depth estimates at each
pixel are sorted and the depth with the highest confi-
dence estimate is chosen as the fused depth.

• Confidence fusion. The method of Ref. 17 as explained
in Sec. 4.

• Our method.

In Table 1, we show the error in the entire image including
the occluded regions. The error is computed as the percent-
age of pixels of the covered area differing from the ground
truth by more than 1. The inputs were the result of various
real-time stereo matching methods as described in Sec. 4.
Our method can be seen to perform better than the others.
The input depth maps had considerable amount of error.
Figures 1–4 provide a visual indication of the errors in
the inputs and the results obtained using the different fusion
methods. Table 2 shows the percentage of image area
covered by the fusion methods.

Fig. 3 A comparison of the various fusion methods on the teddy image. The images of the first row are depth estimates of the right view obtained by
(a) WTA L2 cost with 2 × 2 window, (b) WTA L2 cost with 3 × 3 window, (c) WTA L2 cost with 4 × 4 window, and (d) WTA census cost 9 × 7. The
second row (e) to (h) are the corresponding left view estimates. The images in the third row are the left view results of the fusion methods (i) median
depth, (j) median of confidence, (k) the method of Ref. 17, and (l) our method. The ground truth image (m) is given in the last row.
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In Tables 3 and 4, we show the error and coverage for the
nonoccluded areas alone. In this case, too, our algorithm per-
forms better than the others.

In Tables 5–8, we show the percentage error and
coverage for the full image and the nonoccluded regions
only. The input depth maps in this case are the results

of winner-takes-all adaptive window-based cost aggrega-
tion as described in Sec. 4. The inputs are much noisier
than in the previous case, yet fusion algorithms are able
to extract reasonably good depth maps. Our algorithm
performs much better than others even in this noisy
case.

Table 2 Comparison of fusion algorithms. The table shows the percentage of pixels of the covered area that have a valid depth estimate. The
inputs to the fusion algorithm are the results of the ELAS,12 constant space belief propagation,23 and horizontal and vertical scan line methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 99.91 99.95 99.97 99.95 99.97 99.89 99.99 99.92

Median of costs 99.95 99.90 99.96 99.97 99.94 89.47 99.92 99.98

Confidence fusion 86.63 88.20 89.44 96.45 85.70 73.11 86.35 86.28

Our method 84.31 87.01 87.22 96.42 81.85 70.14 85.52 84.20

Table 3 Comparison of fusing algorithms. The table shows the percentage of pixels of the nonoccluded covered area, differing from the ground
truth by more than 1. The inputs to the fusion algorithm are the results of the ELAS,12 constant space belief propagation,23 and horizontal and
vertical scan line methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 06.21 04.99 09.26 02.23 13.34 24.49 17.00 14.58

Median of costs 06.35 05.86 08.67 01.90 13.08 18.27 16.66 14.60

Confidence fusion 04.17 04.74 07.23 01.49 11.37 11.75 13.88 12.36

Our method 03.25 03.19 06.24 01.24 9.58 13.91 12.80 09.56

Fig. 4 Our results on some real world images. The image in the top row is from the dataset of Ref. 27.

Journal of Electronic Imaging 011002-6 Jan–Mar 2013/Vol. 22(1)

Krishnamurthy and Rastogi: Refinement of depth maps by fusion. . .

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 02/08/2013 Terms of Use: http://spiedl.org/terms

SPIE-IS&T/ Vol. 8667  866701-18



Table 6 Comparison of fusing algorithms. The table shows the percentage of pixels of the image area having a valid depth estimate. The inputs to
the fusion algorithm are the results of the winner-takes-all adaptive window methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Median costs 99.41 99.57 99.48 99.81 99.23 99.64 99.57 99.80

Confidence fusion 85.19 74.53 71.85 71.43 71.34 69.83 68.34 77.33

Our method 81.30 73.24 71.37 79.98 71.69 67.93 67.62 72.74

Table 7 Comparison of fusing algorithms. The table shows the percentage of pixels of the nonoccluded covered area differing from the ground
truth by more than 1. The inputs to the fusion algorithm are the results of the winner-takes-all adaptive window methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 08.00 14.39 18.17 16.27 18.81 27.85 30.79 21.00

Median of costs 08.38 15.46 23.31 29.12 21.79 22.92 29.52 18.22

Confidence fusion 06.34 12.55 20.44 17.37 13.39 16.00 24.21 14.50

Our method 04.27 09.16 11.63 09.34 12.97 18.14 21.69 12.00

Table 4 Comparison of fusing algorithms. The table shows the percentage of pixels of the nonoccluded covered area that have a valid depth
estimate. The inputs to the fusion algorithm are the results of the ELAS,12 constant space belief propagation,26 and horizontal and vertical scan line
methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 84.53 85.24 87.48 95.88 82.01 76.41 88.35 86.34

Median of costs 84.53 85.24 87.47 95.88 82.00 76.26 88.35 86.32

Confidence fusion 81.83 82.49 84.71 94.75 79.82 69.11 84.62 82.53

Our method 81.28 82.75 83.88 95.06 78.78 67.82 84.39 81.85

Table 5 Comparison of fusing algorithms. The table shows the percentage of pixels of the covered area differing from the ground truth by more
than 1. The inputs to the fusion algorithm are the results of the winner-takes-all adaptive window methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 17.26 22.63 25.69 18.95 31.59 42.19 37.93 30.04

Median of costs 18.36 23.92 30.36 31.45 34.40 39.54 37.02 28.16

Confidence fusion 11.69 17.42 24.73 19.07 21.20 25.96 28.65 21.20

Our method 05.08 10.55 12.70 10.08 15.14 21.38 22.55 13.78
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6 Discussion
We have described a method for fusing several depth maps in
order to output a depth map of higher quality than the inputs.
We have demonstrated that our method performs robustly on
several standard stereo pairs as well as unconstrained real
world images. The algorithm is simple to implement and
can be used along with real-time methods to significantly
improve the quality of the depth maps. Simple post process-
ing techniques like segmentation followed by plane fitting
can lead to better coverage and subpixel refinement.

The success of our proposed method indicates that further
study in this direction may be profitable.
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Table 8 Comparison of fusing algorithms. The table shows the percentage of pixels of the nonoccluded image area having a valid depth estimate.
The inputs to the fusion algorithm are the results of the winner-takes-all adaptive window methods.

Fusion method Aloe Cones Teddy Venus Reindeer Art Books Moebius

Median of depths 84.53 85.24 87.48 95.88 82.01 76.41 88.35 86.34

Median of costs 84.20 85.01 87.29 95.79 81.82 76.21 88.18 86.22

Confidence fusion 77.84 67.60 66.03 69.48 64.37 61.60 63.89 70.69

Our method 78.37 69.62 68.84 78.81 69.44 64.88 66.46 70.76
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Abstract. Long-exposure handheld photography is degraded with
blur, which is difficult to remove without prior information about the
camera motion. In this work, we utilize inertial sensors (accelerome-
ters and gyroscopes) in modern smartphones to detect exact motion
trajectory of the smartphone camera during exposure and remove blur
from the resulting photography based on the recorded motion data.
The whole system is implemented on the Android platform and
embedded in the smartphone device, resulting in a close-to-real-
time deblurring algorithm. The performance of the proposed system
is demonstrated in real-life scenarios.© 2013 SPIE and IS&T [DOI: 10
.1117/1.JEI.22.1.011003]

1 Introduction
Blur induced by camera motion is a frequent problem in pho-
tography mainly when the light conditions are poor. As the
exposure time increases, involuntary camera motion has a
growing effect on the acquired image. Image stabilization
(IS) devices that help to reduce the motion blur by moving
the camera sensor in the opposite direction are becoming
more common. However, such hardware remedy has its lim-
itations, as it can compensate only for motion of a very small
extent and speed. Deblurring the image offline using math-
ematical algorithms is usually the only choice we have in
order to obtain a sharp image. Motion blur can be modeled
by convolution, and the deblurring process is called decon-
volution, which is a well-known ill-posed problem. In gen-
eral, the situation is even more complicated, since we usually
have no or limited information about the blur shape.

We can divide the deconvolution methods into two cat-
egories: methods that estimate the blur and the sharp
image directly from the acquired image (blind deconvolu-
tion) and methods that use information from other sensors
to estimate the blur (semi-blind deconvolution).

Over the last few years, blind deconvolution has experi-
enced a renaissance. The key idea of new algorithms belong-
ing to the first category is to address the ill-posedness of
blind deconvolution by characterizing the image prior to
using natural image statistics and by a better choice of
estimators. A frantic activity started with the work of
Fergus et al.,1 who applied variational Bayes to approximate
the posterior by a simpler distribution. Other authors2,3,4,5

stick to the “good old” alternating maximum a posteriori esti-
mation approach, but by using ad hoc steps, which often lack
rigorous explanation, they converge to a correct solution.
Levin et al. in Refs. 6 and 7 proved that a proper estimator
matters more than the shape of priors. They showed that mar-
ginalizing the posterior with respect to the latent image leads
to the correct solution of the blur. The marginalized proba-
bility can be expressed in a closed form only for simple pri-
ors that are, e.g., Gaussian. Otherwise approximation
methods such as variational Bayes8 or the Laplace approxi-
mation9 must be used. Complex camera motion often results
in blur that is space-variant, i.e., the blur is a function of a
position vector. As a rule, the space-variant blur cannot be
expressed by an explicit formula, but in many cases it has a
special structure that can be exploited. If only one type of
camera motion is considered (e.g., rotation), we can express
the degradation operator as a linear combination of basis
blurs (or images) and solve the blind problem in the space
of the basis, which has much lower dimension than the origi-
nal problem. Whyte et al.10 considered rotations about three
axes up to several degrees and described blurring using three
basis vectors. For blind deconvolution, they used an algo-
rithm analogous to Ref. 1 based on marginalization over the
latent sharp image. Gupta et al.11 adopted a similar approach,
replacing rotations about x and y axes by translations. State-
of-the-art blind-deconvolution algorithms achieve some-
times awesome results. However, their main limitation is that
they work only in specific situations, they are prone to local
extrema, and they are computationally very demanding.

The second category of deconvolution algorithms (semi-
blind) tries to overcome these drawbacks by using informa-
tion about the camera motion from other sources. One
possibility is to acquire a pair of images: one correctly
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exposed but blurred and one underexposed (noisy) but sharp
image. Then we can apply multichannel blind deconvolution
methods, which are better posed, as was proposed for exam-
ple in Refs. 12, 13, and 14. Another possibility is to attach an
auxiliary high-speed camera of lower resolution to estimate
the point-spread function (PSF) using for example optical
flow techniques.15,16 Many devices, such as modern smart-
phones, are now equipped with inertial sensors (gyroscopes
and accelerometers) that can give us accurate information
about camera motion. If we are able to reconstruct camera
path, then we can recover blur and perform nonblind
image deblurring. This idea was recently described by
Joshi et al., in Ref. 17, but they have designed an expensive
measuring apparatus consisting of a digital single-lens reflex
camera and a set of inertial sensors and perform image
deblurring offline on a computer. This work is based on
the same idea, but our aim is to show that image deblurring
is feasible on modern smartphones and not requiring any
other devices.

The main contribution of this work is to illustrate that blur
estimation with built-in inertial sensors is possible and to
implement image deblurring on a smartphone, which
works in practical situations and is relatively fast to be
acceptable for a general user. The next section shows the
relation between the camera pose and the image blur, and
discusses simplifications that we make. Section 3 briefly
describes implementation on our test device (Samsung
smartphone). Section 4 shows results of our experiments
and addresses pitfalls that are common for cameras
embedded in smartphones.

2 Camera Motion Blur Analysis
We start the discussion with a general camera motion. Since
our primary goal is a handy implementation for mobile devi-
ces, we then introduce simplification of the problem that
allows a fast and memory-conserving solution with promis-
ing results.

2.1 Model
The image degradation model is represented by relation

g ¼ HðuÞ þ n; (1)

where H is a linear degradation operator and n is additive
noise. Image coordinate indices are omitted here for simplic-
ity. Our goal is to find an estimate of the original image u
from the observed blurred image g.

To track the effect of camera motion on the output
image, we first assume a standard perspective projection
Π∶ℝ3 → ℝ2 that transforms a three-dimensional (3-D)
point ½x; y; z� in the observed scene to a two-dimensional
(2-D) location ½x 0; y 0� in the image plane:

Πð½x; y; z�TÞ ¼
�
xf
z
;
yf
z

�
T
: (2)

For the sake of brevity, we assume here only the focal
length f in the intrinsic camera matrix. The optical axis is
identical with the z axis. During camera motion, projection
of a point p ¼ ½x; y; z�T at time τ within the exposure period
is given by

CðτÞ ¼ Π

0
@RðτÞ

" x
y
z

#
þ
" txðτÞ
tyðτÞ
tzðτÞ

#1
A ¼ Π½RðτÞpþ tðτÞ�;

(3)

where R and t are the 3-D rotation matrix and translation
vector, respectively, that define the camera pose at time τ.
The rotation matrix RðτÞ is given by three rotation angles
ϕxðτÞ, ϕyðτÞ and ϕzðτÞ.

The resulting curve Cmakes up a trajectory of a trace that
is left on the sensor by a point light source. Assuming a con-
stant illuminance over the exposure period, the light energy
emitted from the point is distributed evenly (with respect to
time) over the curve C. This effectively gives us a time para-
metrization of a PSF for a given point, which forms the blur
operatorH. The operatorH can be written in a form naturally
generalizing standard convolution as

HðuÞ½x; y� ¼
Z

uðx − s; y − tÞh̃ðs; t; x − s; y − tÞdsdt; (4)

where h̃ depends on the position (third and fourth variable)
and can be regarded as a space-variant PSF.

Now we can draw the relation between ~h in Eq. (4) and
the curve C. For any given 3-D point at position p rendered
on the image plane to ½x 0; y 0� ¼ ΠðpÞ the point-spread blur
function h̃ðs; t; x 0; y 0Þ is a 2-D function of ½s; t�, which can be
interpreted as a blurred image of an ideal light point dis-
played at ½x 0; y 0�. It can be thus obtained by rendering the
curve C on a plane with the total integral of ~h (which has
to be equal to 1 to conserve distribution of energy) distrib-
uted along the path evenly in respect to the time parameter.

In the next section, we will show how to simplify
this model and assume the space-invariant case, i.e., ~hðs; t;
x; yÞ ¼ hðs; tÞ.

2.2 Space-Invariant Simplification
We will consider a situation when the operator H is spatially
invariant, so Eq. (1) becomes

g ¼ h∗uþ n; (5)

where “∗” denotes convolution and h is a space-invariant PSF.
The PSF Eq. (3) is spatially variant in general, so it will be

modified for our purposes. First of all, the translation t
affects the projection differently depending on the object dis-
tance from the camera. The relation is inversely proportional,
as shown in Fig. 1(a). In the case of our test device, if the
camera shifts by 1 mm, objects at distance of 2 m or more
move by less than 1 pixel in the image. We can thus effec-
tively ignore translation as a cause of blur in many practical
situations.

Rotation about the optical z axis (yaw) intuitively inter-
feres with the space-invariant blur assumption. This type of
rotation applied on a point light source placed in the center of
the picture (on the optical axis) leaves the projection
unchanged, but points outside the center form arc-shaped
traces that grow toward the image borders. Provided that
the camera is rotated with an equal amount around all
three axes, which is a fair assumption under normal circum-
stances, a yaw has the least effect on the resulting blur, espe-
cially in the center of the sensor. Cellphone cameras typically
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have the focal length close to the sensor size, which means
that only close to the image borders the blur size produced by
yaw is approaching the blur size produced by rotation about
x or y; see Fig. 1(b).

The last obstacle towards the space-invariant PSF is the
perspective projection itself. Length of a trace caused by x
and y rotations are projected slightly differently depending
on the distance from the optical center, because the rectilin-
ear projection in Eq. (2) casts a point at an angle α from the
optical axis to a point at a distance of f · tanðαÞ from the
image center. The tangent function is close to linear for
small angels, so both x and y rotations by a small angle α
shift a point in the sensor center approximately f · α
away in the direction of the given axis. Using the same
rule for all points on the sensor gives us the space-invariant
simplification of Eq. (3):

CðτÞ ≈
�
x 0

y 0

�
þ f

�
ϕxðτÞ
ϕyðτÞ

�
; (6)

where ½x 0; y 0� is the location of a point in the image. This
approximation holds if z is large, and x 0ϕx ≪ f and

y 0ϕy ≪ f, which is true at least in the central part of
the image.

3 Implementation
As a testing platform, we have chosen a Samsung Galaxy S II
smartphone with Android OS. It is equipped with all the
apparatus needed for our experiments; namely a relatively
high-quality camera, motion sensors, a fast CPU, and enough
RAM to perform computations.

3.1 PSF Estimation
During the photo acquisition, samples of angular velocity are
recorded using the embedded gyroscopes, which are after-
ward trimmed to fit the exposure period. An estimation of
the PSF is rendered by integrating the curve position from
the recorded data using Eq. (6).

3.2 Deconvolution
State-of-the-art nonblind deconvolution methods use sparse
image priors, and the solution is usually found by some iter-
ative minimization algorithms, such as in Ref. 4. However, the
limited computational power of the smartphone prevents us
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Fig. 1 Dependence of projection shift on translation and z rotation for a test device. (a) Influence of 1 mm x or y translation depending on object
distance. Angle of view is 60 deg; two curves represent different image sensor resolution; (b) influence of 1 deg rotation about x and z axis
depending on a distance d from the image sensor center. The full sensor extent corresponds to d ¼ 2.3 mm; image resolution is 2048 × 1536.
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Fig. 2 Basic application workflow. Together with a taken photograph gyroscope data are recorded, which is a base for blur kernel estimation. A
deconvolution is then performed to remove blur from the image.
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from implementing these sophisticated deconvolution meth-
ods. We thus use a simple but fast Wiener filter in the form

Û ¼ G
H�

jHj2 þΦ
; (7)

where Φ is an estimation of the inverse signal-to-noise ratio,
and G, H, and Û are discrete Fourier transforms of the
observed image g, PSF h, and the estimated latent image
û, respectively.

Filtering in the frequency domain treats the image as
a periodic function, which causes ringing artifacts around
image borders. To overcome this problem, several less
or more sophisticated techniques were proposed in the
literature.18,19 We have found sufficient to preprocess the
input image g by blending the opposite image borders at
the width of the PSF, which creates a smooth transition
and eliminates the artifacts.

The intensity values of the output image û sometimes lie
outside the 8-bit range (0 to 255), therefore we added
optional normalization with clipping of outliers. The nor-
malization is especially useful in the case of larger blurs
and scene with high illumination.

For conversions of the images to frequency domain and
back, we use fast Fourier transform (FFT) algorithm imple-
mented in the fastest Fourier transform in the West (FFTW)
library. Utilizing a fast ARM Cortex-A9 CPU with two cores
and support for a single instruction, multiple data instruction
set (NEON), FFTW proved to be remarkably fast on the
tested smartphone (see Table 1).

The acquired images with native camera resolution of
3264 × 2448 is by default scaled down to 2048 × 1536 to
take the advantage of better performance of FFTW when
the image size is a factor of small primes. Image downsampling
has a negligible effect on the image quality, because native
camera resolution is unnecessarily high. The optical system
of the camera has a very small aperture, which, because of dif-
fraction and optical aberrations, limits the number of pixels that
can be effectively captured by the image sensor.

To perform Wiener filtering, FFT must be applied several
times: once for the PSF and twice (forward and backward-
inverse) for each color channel. That yields a total of seven
FFT operations. With some overhead of bitmap transfers, the
deconvolution phase for the image resolution 2048 × 1536
takes about 2.6 s. The whole process starting from the cam-
era shutter is done in a little over 6 s. This includes image
resizing, PSF estimation, compressing, and saving the origi-
nal and deblurred image files. The main application work-
flow is summarized on a schematic diagram in Fig. 2.

4 Results
In this section we display several of our results together with
estimated PSFs; see Figs. 3, 4, and 5. All results were com-
puted with the signal-to-noise parameter Φ set to 0.01. This
value was determined experimentally to provide the best
looking results. The original intention was to set Φ propor-
tionally to the film speed (ISO value) extracted from the
exchangeable image file format data of a photo, which
should determine the amount of noise present in the
image. However, we found the dependency of Φ on ISO
very negligible. We explain this behavior by the denoising
step that the mobile phone internally performs on the cap-
tured photos.

For comparison, we show an advanced nonblind iterative
method (TV-L1) by Xu and Jia (Ref. 5)*, which minimizes
image total variation and data term in the L1-norm. We also
tested blind deconvolution proposed in the same, which is
probably currently the best blind deconvolution method.
However, the result of the first test image shown in
Fig. 3(e) illustrates a total failure of this method when
applied to images taken by our test device. The PSF
[Fig. 3(f)] estimated by the blind deconvolution method is
close to a delta function and the estimated image
[Fig. 3(e)] is thus a slightly sharpened image. We suspect
that small PSF variations in space and/or the image post-
processing done by the smartphone prevents a successful
estimation of the correct motion blur. The same unsatisfac-
tory behavior was observed in all our tests. However, our
results in Figs 3(c), 4c, and 5c illustrate that in spite of a
relatively simple approach, which incorporates the Wiener
filter with the space-invariant PSF estimated by inertial sen-
sors, the proposed method is capable of producing convinc-
ing images exposing many details that were hidden in the
original. The nonblind algorithm of Xu and Jia, which is
using the same PSF estimated by inertial sensors, tends to
amplify the signal, which rather emphasizes noise and
false edges than gains signal improvement. Conversely,
high-frequency details are more suppressed, probably due
to being treated as noise, despite of careful attempts to
tune the parameters of the method. Within our testing envi-
ronment, the simplified Wiener filter is more advantageous
as it filters all frequencies evenly which apparently matches
the spectrum characteristics of most of the tested images.

Our results seem to lack contrast, which is largely because
of the normalization. On the other hand, it helps retaining the
full dynamic range without saturation as clearly seen in the
comparison Fig. 3.

Our deconvolution process admittedly has downsides, as
well. Focusing in a dark environment may be unsuccessful,
and then the deconvolved result cannot be sharp even if the
PSF estimation is correct, since we lack any means to esti-
mate the out-of-focus blur.

The subjective quality of the deconvolution output is not
entirely consistent. Images presented in this section are the
best-looking results. Outputs of the similar quality are fre-
quently achieved by our method, but sometimes the result
is impaired by visual anomalies worsening its appearance.
Most often it is manifested as ringing artifacts surrounding
sharp edges in the picture, as demonstrated in Fig. 6.

Table 1 Speed (in milliseconds) of FFT transform of grayscale
images with different sizes and different CPU settings.

Resolution No NEON, No hardware
FPU

NEON, 1
core

NEON, 2
cores

1536 × 1152 2900 185 110

2048 × 1536 5300 330 195

2050 × 1538 — 1000 540

3264 × 2448 21200 1450 800 *An executable is available for download at ~http://appsrv.cse.cuhk.edu.hk/
~xuli/deconv.zip
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The lack of control over camera hardware in the phone
(no manual exposure settings, no access to raw data from
the image sensor) and inaccurate timing of exposure events
prevents us to systematically evaluate our method and find
sources of malfunctioning.

The main problem is most likely the space-variant nature
of the PSF as discussed in Sec. 2, which is particularly
noticeable when a rotation about the z axis is significant
or a translation movement is present and the scene depth
is small. The example in Fig. 6 is influenced by a combina-
tion of both of these factors. The space-invariant approxima-
tion of camera projection is often apparent in parts close to
image borders, because of a relatively wide camera field of
view (60 deg).

However, another cause is the shutter mechanism. Contrary
to systems with a mechanical shutter, values of illuminated
pixels are here read successively line by line. The readout
from the CMOS sensor takes several tens of milliseconds
as shown in Fig. 7, which results in a picture not taken at
a single moment, but with a slight time delay between the
first and last pixel row. This process, called rolling shutter,
is therefore another cause of the blur variance as the PSF
depends on the vertical position in the image. The correct
approach to PSF estimation is thus shifting inertial sensor
data in time according to the vertical position in the image.

The application programming interface (API) of the
tested device does not allow accurate synchronization
between camera and gyroscope samples. Therefore we have

(a) original (b) TV-L1 (c) our result

(d) PSF

(e) Xu, Jia — blind (f) PSF est. – Xu, Jia

Fig. 3 Test 1: 1∕7 s exposure, 16 × 59 estimated PSF.

(a) original (b) TV-L1 (c) our result

(d) PSF

Fig. 4 Test 2: 1∕9 s exposure, 21 × 28 estimated PSF.
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implemented a deconvolution preview, where the user picks
the best option from a set of results created with time-shifted
PSFs. The preview also partly solves the rolling shutter prob-
lem, since the selected time shift corresponds to a horizontal
image band of a certain height that can be considered as
acquired at one moment, thus eliminating the rolling shutter
effect for that image part.

Image post-processing might also present a serious prob-
lem for the deconvolution. Since the original raw data from

the image sensor are not available, we are forced to work
with the JPEG-compressed image, which is most likely proc-
essed by a denoising, contrast-enhancement algorithm, or
lens-distortion compensation. These adjustments are unde-
sirable for our purposes, as they were not taken into account
in our model.

Noise present in gyroscope measurement data can also be
a problem, as displayed in Figs. 8 and 9. This has been exam-
ined in a following synthetic experiment. A test image was

(a) original (b) TV-L1 (c) our result

(d) PSF

Fig. 5 Test 3: 1∕2 s exposure, 72 × 76 estimated PSF.

(a) original (b) result (c) PSF

Fig. 6 An example of an unsatisfactory result.

(a) traces of points on LCD

(b) 40 ms (c) 50 ms (d) 60 ms (e) 70 ms (f) 80 ms (g) 90 ms (h) 100 ms

Fig. 7 A snapshot of point grid displayed on a liquid crystal display screen showing the rolling shutter effect. The bottom row shows a series of blur
kernels rendered using data from the gyroscope sensor shifted in time. Exposure 1∕14 s, PSF images were created from sensor data starting 40 to
100 ms after a synchronization timestamp.
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first blurred using convolution with a PSF counted from one
set of gyroscope samples recorded in our mobile application.
An additive noise was added to the image in accordance with
the model 1 (40-dB Gaussian noise was used). Gaussian
noise was also added to the gyroscope samples to simulate
errors in sensor measurement. Corrupted image was then
repaired using our deblurring algorithm from the altered
motion data. Results for different amounts of noise in gyro-
scope samples are shown in Fig. 8. The mean square error of
the result as a function of the gyroscope noise level (vari-
ance) is in Fig. 9. We can see that the performance starts
to drop for noise levels above 0.05 rad∕s. The gyroscope
noise level typically encountered in the motion sensors inside

mobile devices (in our case Samsung Galaxy S II) is
0.007 rad∕s for our sampling rate, and it is therefore way
below the critical level.

5 Conclusion
We have presented an image deblurring method that can
effectively remove blur caused by camera motion using
information from inertial sensors. The proposed method is
fully implemented on a smartphone device, which is to
our knowledge the first attempt in this direction and renders
the method particularly appealing for end users. We have jus-
tified the space-invariant simplification for certain camera
motions, but simultaneously we have uncovered intrinsic

Fig. 8 Noise in gyroscope data. Synthetically blurred Lena image using PSF from recorded gyroscope samples and afterward deblurred using PSF
from measurements with variable amount of noise. Images are from left to right, top to bottom: original, blurred, and six deblurred images using
original gyroscope data altered by random Gaussian noise with variance from 0 to 0.05 (gyroscope measurements are in rad/s).
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Fig. 9 Mean squared error (MSE) of difference between the original and deblurred image in relation to amount of added sensor noise. Gaussian
noise of variance 0 to 0.1 was added to gyroscope measurements (angular velocity in rad/s). Deconvolution algorithm was then performed using
computed blur kernels based on these altered measurements. MSE of difference to the original image is plotted in the graph (pixel value was
normalized to h0; 1i range). The graph shows mean of 10 iterations for each of the variance values. Lena image was used for the test.
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sources of space-variant blur, such as rolling shutter. The
space-variant implementation of the deblurring algorithm,
which would solve some of the current issues, is in theory
possible, but the computational cost on the smartphone may
be too high. It will be a topic of our future research to find out
whether this is viable.
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Abstract. This paper concerns the compensation of specular high-
light for handheld image projectors. By employing a projector-camera
configuration, where the camera is aligned with the viewer, the distor-
tion caused by nonideal (e.g., colored, reflective) projection surfaces
can be estimated from the captured image and compensated for
accordingly to improve the projection quality. This works fine when the
viewing direction relative to the system is fixed. However, the com-
pensation becomes inaccurate when this condition changes, because
the position of the specular highlight changes as well. We propose a
novel method that, without moving the camera, can estimate the
specular highlight seen from any position and integrate it with
Grossberg’s radiometric compensation framework to demonstrate
how view-dependent compensation can be achieved. Extensive
results, both objective and subjective, are provided to demonstrate
the performance of the proposed algorithm. © 2013 SPIE and
IS&T [DOI: 10.1117/1.JEI.22.1.011004]

1 Introduction
Using an image projector in a mobile phone or digital camera
greatly overcomes the screen-size limitation of the handheld
device and allows the image to be conveniently projected
onto a bigger area on any nearby surface, such as a wall.
Ideally, we would like the handheld projector to be able to
project a clear image regardless of the physical characteris-
tics of the projection surface. In practice, however, the pro-
jection surface available in the surroundings is often far from
ideal and causes distortions to the projected image. As a
result, geometric warping and radiometric compensation
must be applied to the image before projection to counteract
the nonideal characteristics of the projection surface. This

compensation operation is especially important for immer-
sive displays1–3 and other related applications, where it is
practically difficult to acquire an ideal screen. In general,
algorithms for such visual computing utilize a projector-
camera (procam) system, in which a number of calibration
images are projected in advance, and the camera’s feedback
is analyzed to rectify the geometric4–10 and photometric11–24

properties of the projection surface. This paper concerns the
radiometric compensation of a procam system.

A highly desirable technique to combat the effect of color
distortion is tone mapping. It shifts the original image’s color
space such that, when projected on a colored screen, the
compensated image is perceived undistorted. Grossberg
et al.21 proposed a procam model with a simple tone map-
ping. Only six calibration images are required to recover the
screen’s spectral response, prior to online compensation of
each input image. While the chroma of the projected image is
corrected, the contrast is inevitably reduced since the light
absorbed by the screen is unrecoverable. Huang et al.11 pro-
posed to optimize the offset between chroma correctness and
contrast such that radiometric compensation can be applied
to deeply colored screen. Some other algorithms consider
content-dependent compensation25–27 or optimal tone map-
ping that is adaptive to the projector’s gamut.28,29 A detailed
review of existing radiometric compensation techniques can
be found in Ref. 30.

It is worth noting that, while these kinds of radiometric
compensation algorithms have been successful in many
cases, three major limitations remain. First, their use for
non-Lambertian screens has been somewhat limited. The
reason lies in the fact that, for reflective screens, the visual
quality tends to be ruined by the specular highlight generated
by the projection itself. The importance of this issue should
not be neglected because it is hard to find an ideally diffusive
surface to project whenever needed. To our knowledge, the
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problem of specular reflection regarding radiometric com-
pensation has not been addressed before. Park et al. tried
to eliminate specular light using multiple projectors,31–33

but their work only estimated the position of the specular
light. Without modeling specular light’s intensity, Park’s
method is not applicable to radiometric compensation.
Second, it is hard to characterize the specular light’s intensity
in a procam system because the bidirectional reflectance
distribution function (BRDF) of the projection surface is
unknown. For a procam system, the material of the projec-
tion surface cannot be determined in advance, so it is impos-
sible to recover the BRDF from existing BRDF databases of
various materials. Also, performing full measurement of the
BRDF in a procam system is time-consuming and imprac-
tical for real-time usages. These obstacles make it hard to
model, or even to eliminate, specular light in conventional
radiometric compensation techniques. Third, one fundamen-
tal assumption of most radiometric compensation techniques
is that the camera is placed where the viewer is supposed to
be. This assumption is easily violated since the procam
device can be placed statically while the viewer is allowed
to move freely. In this scenario, the position of the specular
light changes depending on the viewer’s position, which
nullifies the compensation calculated based on the statically
placed camera. Thus, for non-Lambertian screens, one
should design a more general radiometric compensation
algorithm that takes the dynamics of specular highlight
with respect to the viewing direction into consideration.

In this paper, we propose an algorithm for view-depen-
dent radiometric compensation of non-Lambertian surfaces,
with multifold contributions. First, it is a simple scheme that
does not require additional projectors or cameras to recon-
struct the BRDF of the surface—only one camera and one
projector suffice. Second, it is the first that predicts the
calibration images for different viewing angles from those
captured at a single viewing angle, which greatly extends
the capability of a procam system. Third, it introduces a feed-
back to estimate the specular light iteratively, which avoids
over-compensation. Since the proposed method predicts the
calibration images for an arbitrary viewing angle, it can be
treated as a preprocessing module for existing radiometric
compensation techniques. We show the effectiveness of
the proposed method by integrating it with Grossberg’s
radiometric compensation framework,21 which is accurate
only at the viewing angle where the calibration images
are captured. By predicting calibration images at various
viewing angles using our method, automatic photometric
compensation for an arbitrary viewing angle is made
possible.

This paper is organized as follows. We introduce specular
light in Sec. 2, and then we describe the proposed radiomet-
ric compensation algorithm in Sec. 3 and the experimental
results in Sec. 4. Then the subjective and objective evalua-
tions are provided in Sec. 5. Finally, the conclusions are
drawn in Sec. 6.

2 Specular Highlight Modeling
Consider projection onto a non-Lambertian (or reflective)
screen. While most of the light is evenly scattered, a
small portion of light rays directly reflect as if the surface
is a mirror. This mirror-like reflection of light is commonly
known as specular highlight and has been considered

important in three-dimensional (3-D) computer graph-
ics.34–38 There exist different models for predicting the dis-
tribution of the specular highlight, such as the Phong
model,38 the Blinn-Phong model,37 the Gaussian distribution
model,39 and the Cook-Torrance model.36

We model the specular highlight using the Phong model
and the notations shown in Fig. 1 in the following derivation.
For each point on the surface, the specular light Is is given by

Is ¼
X
m∈L

ksðR̂m · V̂Þγim;s; (1)

where L is the set of all light sources, ks is the specular
reflection constant, R̂m is the direction of the perfectly
reflected light, V̂ is the direction toward the viewer, γ is the
shininess constant for the screen material, and im;s is the
intensity of the light source. Note that R̂m and V̂ are unit
vectors.

3 Proposed Approach
Figure 2 shows the overall architecture of the proposed
method, which generates view-dependent compensated
images for a non-Lambertian surface. The method first proj-
ects a uniform image onto the surface. Then it utilizes the
projected image to fit the specular highlight model, estimate
the calibration images viewed at different positions, and per-
form radiometric compensation using the estimated calibra-
tion images. The radiometric compensation framework
proposed in Ref. 21 is adopted in our work.

To perform geometric calibration, a chessboard pattern is
projected on the surface and captured by the camera. We then
detect the chessboard corners in the captured image and
apply Zhang’s method40 to find the geometric transformation
that calibrates perspective distortion and radial distortion.
Subsequently, all captured images are geometrically calib-
rated by the same geometric transformation.

Since the perceived specular light varies with respect to
the viewing angle of a viewer, we need a precise description
of the viewing angle. Assuming the viewer can only move
along the xz-plane in Fig. 3, which depicts the viewing
geometry, we define the viewing angle θ, measured in
degree, to be 90 deg when the viewer stands right in front
of the screen. In its simplest form, we assume the viewer
and the procam system are at the same height. That is, the
change of the viewing angle only has one degree-of-freedom.
When precise spatial information of the viewer is available,
the proposed method can be extended to account for 2-D
variation of the viewing angle. In this section, the details of
the proposed method are described in accordance with the
processing flow shown in Fig. 2.

Fig. 1 Notations used in the Phong model. It characterizes how a
viewer (at V̂ ) perceives the reflected light (at R̂) of an incident light
(at Ŷ ) on a point with surface normal N̂.
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3.1 Specular Highlight Model Fitting
We estimate the unknown parameters, ks, γ, and im;s, in the
Phong model from the luminance variation of a projected
image. We project a uniform gray image onto the screen
and capture it by a camera placed at 90 deg. The captured
image LU;90 is normalized to L̂U;90 by

L̂U;90 ¼
LU;90

n
; (2)

where

n ¼ max
x;y

LU;90ðx; yÞ (3)

is the normalizing constant. L̂U;90, with value ranging from
0 to 1, denotes the spatial variation of the luminance. Note
that we cannot estimate the Phong model directly from
L̂U;90, because the luminance variation is caused by the

combination of the following two factors: (1) vignetting
and (2) specular highlight. Vignetting, introduced by the
imperfection of lens, often results in luminance reduction
at the periphery of a photo. Therefore we need to estimate
and exclude the vignetting factor before reconstructing the
Phong model.

The vignetting effect can be calculated by projecting the
same uniform gray image onto an ideal projection screen,
which is assumed to be highly, if not perfectly, diffusive.
More specifically, no specular light should appear on the
ideal projection screen. We normalize the captured image Q
to obtain Q̂, which is the luminance variation caused by pure
vignetting. Since the vignetting effect remains identical
under the same procam configuration, we can extract the
specular highlight S90 by

S90ðx; yÞ ¼
L̂U;90ðx; yÞ
Q̂ðx; yÞ : (4)

It should be noted that the division is performed pixel-
wise. The two-dimensional (2-D) specular highlight S90 is
then sampled along then sampled along the x-axis [see
Fig. 4(a)] to obtain the one-dimensional (1-D) curve of the
specular highlight, as shown in Fig. 4(b). The 1-D curve,
denoted by s, fully characterizes the change of the specular
light along the x-axis of the captured image. Data formed by
s are used as samples of Is in Eq. (1) to estimate the unknown
parameters ks, γ, and im;s. In our scenario, the screen is
assumed to be homogeneous, i.e., made of the same material,
so one set of ks and γ suffices. Since there is only one light
source (the projector), Eq. (1) can be rewritten as

sðxÞ ¼ ks½R̂ðx; yÞ · V̂ðx; yÞ�γisjy¼h; (5)

where h is the height of the camera. Note that the value of R̂
and V̂ can be obtained by considering the relative position of

Fig. 2 The architecture of the proposed method, which consists of three major components: specular highlight model fitting, calibration images
estimation, and radiometric compensation.

Fig. 3 The definition of viewing angle θ (measured in degree).
θ ¼ 90 deg when the viewer stands right in front of the screen.
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the projector, the camera, and each point pðx; yÞ on the pro-
jection surface. For each point pðx; yÞ on the projection sur-
face, V̂ points from pðx; yÞ toward the camera, Ŷ points from
pðx; yÞ toward the projector, and the direct reflected light R̂
can be computed as

R̂ ¼ 2ðŶ · N̂ÞN̂ − Ŷ; (6)

where N̂ is the surface normal. The geometric interpretation
of Eq. (6) is shown in Fig. 5(c). Note that V̂, R̂, N̂, and Ŷ, are
all unit vectors in 3-D space. Figure 5(a) demonstrates the
camera direction for planar projection surface. With varia-
bles rearranged, and logarithm taken on both sides of Eq. (5),
the equation becomes

log½sðxÞ� ¼ logðksisÞ þ γ log½R̂ðx; yÞ · V̂ðx; yÞ�jy¼h: (7)

Based on the scatter plot of log(s) and logðR̂ · V̂Þ, we use
linear regression to obtain ksis and γ.

The method can also be extended to use all samples in
S90ðx; yÞ to fit the Phong model, instead of using only the
1-D samples of s. In this case, Eq. (1) is rewritten as

S90ðx; yÞ ¼ ks½R̂ðx; yÞ · V̂ðx; yÞ�γis; (8)

and ksis and γ can be fitted by linear regressing all data
points in S90ðx; yÞ. Since more samples are used, the fitted
parameters may be more accurate.

3.2 Calibration Images Estimation
Given the specular light response of the screen at θ ¼ 90, we
now move the virtual camera to an arbitrary viewing angle θ
and reconstruct the 2-D specular highlight Sθ observed there.
It follows from Eq. (1) that we can predict Sθ by

Sθðx; yÞ ¼ ks½R̂ðx; yÞ · V̂θðx; yÞ�γii; (9)

where V̂θðx; yÞ denotes the direction pointing from the pixel
pðx; yÞ to the virtual camera at viewing angle θ. Note that ki,
ii, and γ are as computed in Sec. 3.1, and R̂ remains
unchanged because the projector stays at the same place.
Figure 5(b) demonstrates how the values of V̂θðx; yÞ and
R̂ðx; yÞ can be obtained.

Five calibration images should be captured (LR;θ, LG;θ,
LB;θ, LU;θ, and LS;θ) for the radiometric compensation
framework (see Sec. 3.3). To generate radiometric compen-
sation for viewing angle θ, the calibration images at that
viewing angle should be estimated. Calibration images at
θ(LR;θ, LG;θ, LB;θ, LU;θ, and LS;θ) are estimated by adding
the change of specular light on the calibration images at
θ ¼ 90. That is,

LM;θ ¼ LM;90þnðSθ −S90Þ; M ∈ fR;G;B;U;Sg; (10)

where n is the normalizing constant defined in Eq. (3) and
θ denotes the viewing angle (measured in degree) of the
calibration images.

3.3 Radiometric Compensation
We adopt the framework proposed in Ref. 11 for radio-
metric compensation, which is based on the procam model
first introduced by Grossberg et al.21 Grossberg’s model
has great advantage in that only six calibration images are
needed for the photometric compensation. Because
Grossberg’s model deals with screens with spatially variant
color, an “invariant value” is computed pixel-wise in order to
reflect the color distortion of each pixel.21 In our scenario,
where the screen color is assumed to be spatially uniform,
the computation of that “invariant value” is not needed.
This saves one calibration image, and thus only five calibra-
tion images are required. These calibration images consist of

Fig. 4 (a) Specular highlight of a reflective projection surface when
seen at 90 deg; (b) 1-D sample of the specular highlight.

Fig. 5 Illustration of the camera direction in (a) Phong model fitting for planar projection surface and (b) specular light estimation. In the model
fitting, the camera is placed right above the projector. In the specular light estimation, the virtual camera is placed at a different angle θ. In both
conditions, the direct reflected light R̂ is calculated by Eq. (6), whose geometric interpretation is shown in (c).
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four uniform-colored images (red, green, blue, and gray) and
one color ramp consisting of pixels ranging from gray-level 0
to gray-level 255 (Slope). We denote the gray image as U.
These images are shown in Fig. 6(a) to 6(e), whose pixel
values are summarized in Table 1. The pixel values of the
four uniform-colored images should not be set too low;
otherwise, the captured image may be subject to severe
noise generated by the camera sensor. They should not be
set too high, either, since the projector’s response curve is
nearly flat when displaying very bright content. Therefore,
we set the pixel values to be around 110 to 130, a much
safer choice near the middle of 0 to 255. We project these
calibration images and denote the captured images as LM;θ,
M ∈ fR;G; B; U; Sg, where the camera is placed at viewing
angle θ.

Here we want to emphasize a crucial contribution of the
proposed method: no extra image is needed for the recon-
struction of the specular highlight response. We use the
gray calibration image LU;90 as the source image to estimate
the specular highlight. The brightness of U is carefully
chosen such that specular light appears, while the result-
ing luminance variation is recordable by the camera.
Empirically, the pixel value is set to 110.

The procam model is shown in Fig. 7, with each part
illustrated as follows. First, the original image I, after being
mapped by the projector’s response curve fp, becomes the
projected luminance P,

P ¼ fpðIÞ; (11)

where fp is typically a nonlinear transfer function. Note that
I ¼ ½Ir; Ig; Ib�T is the input image with pixel value ranging
from 0 to 255, while P ¼ ½Pr; Pg; Pb�T is in the luminance
domain. Both I and P are 3-D vectors (red, green, and blue
channel).

The overall modulation of the screen is modeled by a
3 × 3 matrix W that characterizes all possible interactions
between the incident light and the reflected light:

W ¼
2
4
WRR WRG WRB

WGR WGG WGB

WBR WBG WBB

3
5: (12)

Generally, W is called the color mixing matrix, which cap-
tures the coupling between each color channel of the projec-
tor and the camera.WGR, for example, denotes the portion of
red channel of the projector that contributes to the green
channel of the camera. It should be noted that W is spatially
variant for each pixel in the projected screen.

By adding the ambient light A, the captured image C is
modeled by

C ¼ WPþ A; (13)

whereC, P, and A are 3-D vectors (red, green, and blue chan-
nel), and W is as defined in Eq. (12). The captured image C
is then transformed back by the camera response curve fc to
result in the output image J,

J ¼ fcðCÞ: (14)

Grossberg et al.,21 proposed an efficient method to recover all
parameters of the procam model. First, the color-mixing
matrix W is decomposed by

W ¼ W̃D¼
2
4

1 W̃RG W̃RB

W̃GR 1 W̃GB

W̃BR W̃BG 1

3
5
2
4
WRR 0 0

0 WGG 0

0 0 WBB

3
5;

(15)

where W̃ and D encodes the inter-channel and the intra-
channel interaction, respectively. ~W can be determined using
just four calibration images (LR;θ, LG;θ, LB;θ, and LU;θ). Let

Fig. 6 The five calibration images: (a) red, (b) green, (c) blue, (d) gray, and (e) slope—a ramp with pixel values ranging from 0 to 255.

Table 1 Configuration of the five calibration images.

Color Pixel value

Red fR;G; Bg ¼ f130;110; 110g

Green fR;G; Bg ¼ f110;130; 110g

Blue fR;G; Bg ¼ f110;110; 130g

Gray fR;G; Bg ¼ f110;110; 110g

Slope (ramp) fR;G; Bg ¼ f0;0;0g ∼ f255; 255;255g

Fig. 7 Grossberg’s procam model. The input image I is first mapped
by the projector’s response curve f p . The projected luminance P is
then modulated by the screen’s color (modeled as a 3 × 3 color mixing
matrix W ) and the ambient light A before being captured by the cam-
era. The captured luminance is then mapped by the camera’s
response curve f c to be the output image J.
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L̄R;θ, L̄G;θ, L̄B;θ, L̄U;θ denote the mean pixel value of LR;θ,
LG;θ, LB;θ, LU;θ, respectively, then W̃ can be computed as

W̃ ¼

2
66664

1
fL̄G;θ−L̄U;θgr
fL̄G;θ−L̄U;θgg

fL̄B;θ−L̄U;θgr
fL̄B;θ−L̄U;θgb

fL̄R;θ−L̄U;θgg
fL̄R;θ−L̄U;θgr 1

fL̄B;θ−L̄U;θgg
fL̄B;θ−L̄U;θgb

fL̄R;θ−L̄U;θgb
fL̄R;θ−L̄U;θgr

fL̄G;θ−L̄U;θgb
fL̄G;θ−L̄U;θgg 1

3
77775
; (16)

where indices r, g and b denote the red, green and blue chan-
nels, respectively. Multiplying W̃−1 on both sides of Eq. (13)
yields

C̃ ¼ DPþ Ã; (17)

where

C̃ ¼ W̃−1C; (18)

and

Ã ¼ W̃−1A: (19)

We say that Eq. (17) decouples the color response of the
screen, since each color channel in C̃ is now affected only
by the same channel of the projector, the screen and the
ambient light. The monotonic mapping ρ between the pixel
value (0 to 255) and the corresponding decoupled luminance
is defined as

C̃ ¼ ρðIÞ: (20)

We reconstruct ρ by the regression of L̃S;90ðx; yÞ, where
L̃S;90ðx; yÞ ¼ W̃−1LS;90ðx; yÞ.

We reconstruct W̃ and ρ for the white screen and the
colored screen, denoted by fW̃w; ρwg and fW̃c; ρcg, respec-
tively, by projecting the calibration images onto both screens.
Once the parameters are reconstructed, we gain full informa-
tion about how the projected image is perceived on both
screens. Therefore it becomes possible to compensate the
radiometric distortion and to make the projection onto a col-
ored screen looks as if it is projected onto a white screen.

Figure 8 illustrates the radiometric compensation frame-
work for a test image Iw. Under this framework, we generate
a compensated image Ic that, when projected on the colored
screen, is perceived almost the same as projection of Iw on
the white screen. The test image is converted first to the

decoupled luminance (C̃w) by ρw, then to the desired
luminance (Cw) by multiplying the color-mixing matrix ~Ww.
Here Cw serves as a simulation of the perceived luminance
supposing the test image is projected on the white screen.

Projection onto a colored screen often leads to loss of the
dynamic range because the upper bound of displayable lumi-
nance is modulated by the screen color, while the lower
bound is determined by the ambient light that brings addi-
tional luminance to black pixels (see Fig. 9). Therefore
compensation toward photometric correctness requires that
the dynamic range be compressed within the recoverable
range. This can be achieved by tone mapping, but the image
contrast is inevitably reduced. A technique was developed in
Eq. (11) to optimize the tradeoff between the photometric
correctness and the contrast. The tone mapping function is
defined as follows:

Cc ¼ αCw þ β: (21)

Here, α and β are determined by considering two kinds of
error: over-upper-bound error (Eu) and below-lower-bound
error (El). Eu and El account for pixels that, after this tone
mapping, lie outside the recoverable dynamic range. In prac-
tice, Eu is computed as the sum of pixels whose luminance
lies over the upper bound; El for pixels with luminance
below the lower bound. α and β are determined by the fol-
lowing optimization:

ðα; βÞ ¼ argmin
α;β

ðEu þ ElÞ þ λEb; (22)

where Eb ¼ ð1 − αÞ2 is the penalty term for brightness and λ
is a weighting factor. The optimization attempts to maximize
the number of pixels that lie within the recoverable dynamic
range, while preserving as much contrast as possible.

We compute the compensated image Ic from the desired
luminance Cc by decoupling the color channels, followed by
mapping the decoupled luminance to an 8-bit pixel value.
The following equations give the compensated image Ic:

C̃c ¼ W̃−1
c Cc; (23)

Ic ¼ ρ−1c ðC̃cÞ: (24)

The quality of the compensated image is determined by the
reconstructed parameters of the procam model, which in turn
depends fully on the captured calibration images. Since the

Fig. 8 The block diagram of radiometric compensation. The test
image Iw is first converted to the decoupled luminance C̃w , then the
color-mixing-matrix W̃w is used to compute the coupled luminance
Cw . The tone mapping function in Eq. (21) is used to map the lumi-
nance Cw seen on white-screen to the luminance Cc on colored-
screen. Finally, the luminance is decoupled by W̃ −1

c to be the
decoupled luminance C̃c , which is then converted back to the
compensated image Ic .

Fig. 9 When the brightest white is projected onto a colored screen,
each color channel suffers from a different amount of distortion. The
upper bound of each channel is independently modulated by the
screen’s color, while the lower bound is determined by the reflected
ambient light that adds additional luminance to black pixels.
Radiometric compensation recovers the color, with the recoverable
dynamic range determined by the minimum dynamic range of the
three channels. The contrast is therefore decreased.
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calibration images are estimated by a virtual camera
colocated with the viewer, the compensation is view-
dependent. For simplicity, we refer to the image compen-
sated for viewing angle θ as “θ compensated image.” For
example, if the viewer is at 60 deg, the compensated
image is denoted by 60 deg compensated image.

3.4 Specular Highlight Estimation Feedback
The luminance of the projected light determines the chroma
and the intensity of the specular highlight. In particular,
when a compensated image is projected, the specular light
slightly differs from that estimated in the initial condition,
under which the calibration image is projected. This often
leads to over-compensation, which is explained as follows.
Suppose a green compensation image is projected onto a
magenta screen, which is expected to recover a purely gray
image. Due to the compensation, the projection is now much
greener, making the specular light greener as well. Extra hue
distortion is thus added to the originally well-compensated
gray image, resulting in overcompensation.

We propose to incorporate the specular highlight estima-
tion feedback that estimates the specular light based on the
content of the compensation image. Since the new compen-
sation image only affects the intensity of specular light (is)
in the Phong model, we change the estimated parameter ksis
by replacing is with ic according to the following equation:

ic ¼ is
Īc
Ū
; (25)

where Ū and Īc are the mean pixel intensity of U and Ic,
respectively. Note that Eq. (25) is computed respectively
for each color channel. In practice, we iterate the feedback
loop three times.

Here the light from the projector is modeled as a point
source. This is definitely a simplified, yet usable, model.
More complex modeling can be designed to compute the
projector’s light field, which considers the specular light
caused by each single beam projected onto each pixel on the
surface. Nevertheless, this is beyond the scope of this paper
and deserves a separate treatment.

3.5 Possible Extension
The proposed method is designed for, but not limited to, pro-
cam systems consisting of a projector and a camera bound
together. This is the most applicable configuration that can
be nicely packaged as one unit and is well suited for mobile
projectors. For a procam system with multiple projectors and
cameras, some extra work is needed for the proposed tech-
nique to be adopted. In the case of multiple projectors, geo-
metric registration (e.g., using Zhang’s method)40 is needed
for each projector to seamlessly merge all projections. Then
our technique can be used to estimate the specular light
contributed by each projector. Specifically, we can divide the
image to be projected into a number of patches, each of
which is then projected onto the projection surface by the
specific projector that produces the least specular light for
that patch. In this way, the system is able to support multiple
viewers at different viewing angles simultaneously with min-
imum specular light perceived by each viewer. With multiple
cameras, on the other hand, the system is able to estimate the
specular light distribution more accurately, because images

captured at various viewing angles now provide more sam-
ples to fit the specular light model.

4 Experimental Results
The proposed algorithm is applied to the radiometric com-
pensation framework described in Ref. 11 and shown in
Fig. 2 as the radiometric compensation module. Specifically,
we integrate specular highlight model fitting and calibra-
tion images estimation with the radiometric compensation
module.

Figure 10 shows the experimental setup of our procam
system, which consists of a projector (SanyoPLC-XW56)
and a camera (Canon40D). The screen is an A4 paper,
one half of which is printed in color by a color laser printer.
It should be noted that the printed ink is itself reflective,
making the colored side a non-Lambertian surface. Also
note that both the projector and the camera are placed at
90 deg viewing angle.

We report results for two test images, namely Waterfall
and Motorbikes. The resolution of both images is 640 × 320.
The projection of both images on the white screen is shown
in Fig. 11, which serves as ideal images for other projections
to compare with. We project Waterfall on a magenta screen,
where the photometric distortion is shown in Fig. 12(a). To
compensate for the distortion, 90 deg compensated image
is projected and the result is captured by a camera placed
at 90 deg [see Fig. 12(b)]. Although Fig. 12(b) recovers
most visual quality, the compensation becomes inaccurate
when seen at 60 deg, as shown in Fig. 12(c). In fact, the
specular light present at 90 deg almost vanishes when
seen from 60 deg, thus the image’s chroma is subject more
to the screen color. Figure 12(d) gives the projection of
60 deg compensation, in which the color is corrected by
the proposed algorithm.

The effectiveness of the proposed method can be identi-
fied by examining the green color that is recovered. As a mat-
ter of fact, green is the most absorbed color for a magenta
screen. Therefore, when the viewing angle changes from
90 to 60 deg, it is the green channel that is the most severely
affected. By comparing the green channel that is recovered
in Fig. 11(c) and 11(d), it becomes clear that the proposed
method offers a satisfactory solution for retaining consistent
visual quality across different viewing angles.

Fig. 10 Experimental setup. The procam consists of a projector
(Sanyo PLC-XW56) and a camera (Canon 40D). The screen is an
A4 white paper, one half of which is printed in color by a color laser
printer.
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Figure 13 shows the result for another test image Motor
bikes. In this case, a green screen is used. The implication of
the result is similar to that of Fig. 12.

5 Evaluation
To validate the proposed method, an evaluation is conducted
to test the model under a representative condition. The same
set of 90 deg compensated and 60 deg compensated images
are projected onto a reflective color surface, and the projec-
tion results are evaluated both objectively and subjectively.

5.1 Comparison with the Ideal Image
This section presents a quantitative analysis of the proposed
method in terms of its ability of projection quality enhance-
ment. To evaluate the method’s generality, a test image is
first projected on an ideal screen as the ground truth Ti.
We then project the following onto the colored screen:
(1) original image To; (2) 90 deg compensated image T90;
and (3) 60 deg compensated image T60. To compare the vis-
ual quality seen at different viewing angle, we capture the
images of To, T90, and T60 at 60 deg. The quality of To,

Fig. 11 Two test images projected on a white surface: (a) Waterfall and (b) Motorbikes.

Fig. 12 Waterfall projected on a magenta surface and seen at different viewing angles:(a) original image seen at 90 deg; (b) 90 deg compensated
image seen at 90 deg; (c) 90 deg compensated image seen at 60 deg; (d) 60 deg compensated image seen at 60 deg.

Fig. 13 Motorbikes projected on a green surface and seen at different viewing angles: (a) original image seen at 90 deg; (b) 90 deg compensated
image seen at 90 deg; (c) 90 deg compensated image seen at 60 deg; (d) 60 deg compensated image seen at 60 deg.
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T90, and T60 can be represented by summing the pixel-wise
difference deviated from Ti. That is, the lower the sum of
squared error, the better the quality. A general representation
of the error is as follows:

E ¼
X

x;y
jTtðx; yÞ − Tiðx; yÞj2; Tt ∈ fTo; T90; T60g:

(26)

We choose a representative set of test images and the screen
colors and adopt red, green, and blue as the primary colors.
We use three uniform-colored images as test images and
set their pixel value [R G B] to [100 50 50], [50 100 50]
and [50 50 100], respectively. They are paired with red,
green and blue screens to form nine combinations, covering
the basis of all possible image-screen pairing in this setup.

Table 2 lists the results in sum of squared error. There are
two key observations. First, it is evident that, though 90 deg
compensation performs better when seen at 90 deg, it is out-
performed by 60 deg compensation when the viewing angle
is changed to 60 deg. The result strongly indicates that the
radiometric compensation should be adaptive to the viewer’s
position. More importantly, our algorithm is able to further
lower the error. Second, the quality of the original image
is further worsened when seen from 60 deg. This can be ex-
plained by considering the following two factors that affect
the projection: specular light and the screen color. The per-
ceived quality at 90 deg tends to incorporate large portion
of specular light, which is of the same color of the original
image. However, when seen from 60 deg, the specular light
dwindles, and the influence from the screen color increases,
leading to greater photometric distortion. The worsened
quality implies the necessity for radiometric compensation
being used under such condition.

5.2 Subjective Evaluation
We took a total of 26 images in the Kodak lossless true color
image suite41 as the test images. We recruited 20 volunteers

to judge the quality of the projections. Among them, 13 were
male and seven were female, with their age ranging from 22
to 27. All subjects reported no severe visual abnormalities
other than myopia.

Each test image was projected onto a magenta screen with
three variations: (1) the original image To; (2) the 90 deg
compensated image T90; and (3) the 60 deg compensated
image T60. For each test image, the projection process con-
sisted of three rounds, and in each round two of the three
candidates (To, T90, and T60) were projected. Actually, it
was a round-robin contest for To, T90, and T60 in a random
order. The subjects were asked to select from the two can-
didates the one with better quality. The criteria for judging
the quality included chroma correctness, brightness, and con-
trast. The voting system was implemented using MATLAB,
where the subject used keyboard to cast the vote. The same
process was repeated twice, where the subject viewed the
projection at 60 deg in the first time and 90 deg in the second.

Figure 14 summarizes the result of each match.
Figure 14(a) to 14(c) are for subjects being at 90 deg
viewing angle, while Fig. 14(d) through 14(f) are for
60 deg. The overall statistics of each match is shown in
the bottom-right box. Here, we use the symbol “>” to denote
quality superiority. For instance, by “x > y” we mean
“candidate x has better quality than candidate y.” We now
discuss the result of each match: fTo; T90g, fTo; T60g,
and fT90; T60g as follows.

fTo; T90g: This match evaluates the effectiveness of the
conventional radiometric compensation technique. When
seen at 90 deg [Fig. 14(a)], T90 is highly preferred (90.19%)
over To, indicating that the radiometric compensation is suc-
cessful. It seems counterintuitive that, when seen at 60 deg,
T90 performs even better as it received 98.85% of the votes.
This can be explained by noting that the quality of To
severely worsens when the viewing angle changes from
90 to 60 deg, making it even less competitive. As the specu-
lar light abounding at 90 deg become out of sight when seen
at 60 deg, the screen color gradually dominates, and hence
ruins, the quality of To. For this reason, one should not
mistakenly consider that the conventional technique also
performs well for T90 when seen at 60 deg, although T90

received more votes in 60 deg (98.85%) than in 90 deg
(90.19%).

fTo; T60g: This match shows that T60 received votes as
high as 97.69% against To, indicating that T60 has great qual-
ity when seen at 60 deg [see Fig. 14(e)]. The match also
shows that, though highly preferred at 60 deg, T60 was con-
sidered poor in quality (only 62.88% votes) when seen at
90 deg. This is in accordance with our expectation: The
amount of compensation in T60 exceeds what is needed
for 90 deg viewing angle so that the specular highlight of
the compensated color reflects and, as a result, spoils the vis-
ual quality. When viewing a magenta screen at 90 deg, for
example, strong green color in T60 would mostly be reflected
as specular light. Consequently, the resulting image is per-
ceived much greener than the original image. In this case,
subjects showed no strong preference over either To or T60.

fT90; T60g: This is the key part of the whole evaluation,
which proves the validity of the proposed algorithm. From
Fig. 14(f) we can see that T60, generated by the proposed
method, outperforms T90 when seen at 60 deg. Recall that
the traditional radiometric compensation schemes do not

Table 2 Comparison of the sum of squared error (unit: 107).

Screen
color

Pixel value of
the test
image
[R G B]

Seen at 90 deg Seen at 60 deg

T o T 90 T 60 T o T 90 T 60

Red [100 50 50] 8.48 1.70 4.23 12.4 2.74 1.87

[50 100 50] 16.7 3.73 7.34 27.7 5.64 3.57

[50 50 100] 17.8 5.41 7.32 27.6 9.98 8.16

Green [100 50 50] 14.1 3.82 3.98 18.1 5.72 1.70

[50 100 50] 14.1 7.55 7.73 18.4 9.95 7.42

[50 50 100] 12.0 6.12 6.71 14.3 7.55 4.76

Blue [100 50 50] 17.8 2.39 4.92 29.6 8.38 4.88

[50 100 50] 21.8 6.52 7.66 35.6 15.4 13.6

[50 50 100] 8.88 4.67 8.92 12.8 3.59 2.51
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take specular light and viewing angle into account. In con-
trast, our technique is able to provide better visual quality.
Figure 13(c) and 13(f) together strongly suggest that the
radiometric compensation should be adaptive to the viewing
angle. In other words, it is not the best practice to apply a
one-for-all compensation and ignore the viewing direction.
A view-dependent compensation works much better.

6 Conclusion
In this paper, we have addressed the problem of recovering
the projection quality for non-Lambertian surfaces. We have
proposed a novel specular highlight estimation algorithm for
radiometric compensation and discussed how calibration
images for different viewing angles can be predicted from
the reconstructed specular light model.

The proposed algorithm has been rigorously tested. Both
objective and subjective evaluations have been carried out on
a number of test images, and it is shown that the proposed
algorithm consistently outperforms conventional ones. The
proposed technique provides good visual quality for the pro-
jection. In addition, due to its low complexity, it can be easily
incorporated into existing procam systems.
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