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ABSTRACT 

We discuss here bulk-heterojunction polymer solar cells with engineered interfaces to achieve desired phase separations 
(vertical and horizontal), molecule orientations, ohmic contacts, and electronic properties for device performance 
maximization, and to enhance the device durability by eliminating corrosive interfacial layers. The strategies discussed 
include development of novel interfacial layers such as self-assembled organic layers and inorganic metal oxide layers, 
and using inverted cell architectures. Interface engineering leads to optimal active layer morphologies and to polymer π-
orientation, as well as maximum open circuit voltage. Using p-type NiO as the anode hole transporting/electron blocking 
layer results in dramatically enhanced device performance of P3HT/PCBM polymer solar cells with PCEs up to 5%. 
Electrical property and surface morphology investigations of NiO elucidate the mechanism for the enhanced 
performance. Other novel interfacial materials such as self-assembled organic monolayers and graphene oxide (GO) 
have also been incorporated into polymer solar cells to achieve comparable PCEs with improved device stability. Using 
ZnO as electron transporting/hole blocking layer and employing an inverted device architecture, polymer solar cells 
achieve desired molecule π-orientation and vertical phase separation, therefore extremely high fill factors and promising 
power conversion efficiencies. In addition to interfacial layer materials, active layer components with state-of-the-art 
device performance, both polymer and small molecule developed in this laboratory, will also be discussed. 

Keywords: polymer solar cell, interfacial layer, self-assembled organic layer, nickel oxide, graphene oxide, zinc oxide, 
inverted solar cell, organic semiconductor. 

1. INTRODUCTION 

For solar energy conversion, polymer solar cells (PSCs) have recently attracted great attention as renewable energy 
sources because of their amenability to fabricating large-area, flexible, and inexpensive devices via low-temperature, 
high throughput roll-to-roll (R2R) fabrication techniques.1 Moreover, PSC power conversion efficiencies (PCEs) have 
increased substantially over past few years and, as a consequence of combined research efforts from synthetic chemists 
and device engineers, impressive PCEs surpassing 9% have been achieved with PSC active regions configured in a bulk-
heterojunction (BHJ) network of interpenetrating π-conjugated polymer electron donors and high electron-affinity 
fullerene electron acceptors.2 PSC  performance advances have come mainly from developing new semiconductors for 
better photon collection and enhanced carrier transport,3,4 as well as optimizing materials processing and employing 
novel device architectures for efficient exciton separation5 and photocurrent collection.2 Among the various factors 
determining the PSC performance, the interfacial layers (IFLs) play important roles in organic electronics since charge 
injection/collection mainly occurs at such interfaces.6,7 However, electrode/active layer interfacial phenomena remain 
understudied in organic optoelectronic device operation, but likely represent a major constraint for breaking the 
commercialization barrier to achieve 10% PCE and with improved device stability for practical applications.  
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profiled XPS (Figure 11), reveals a C-rich layer at the blend/ZnO interface, distinct from the bulk film. Correspondingly, 
the S content at this interface is significantly depleted, indicating PC71BM enrichment near the blend/ZnO interface.22 
These results indicate that the using ZnO as IFL in combination with inverted device architecture should be an effective 
strategy for increasing the device performance of polymer solar cells due to the desired vertical phase gradation induced 
by the surface energy difference between polymer and PC71BM, and their interactions with ZnO IFL. 

 

3. CONCLUSIONS 
A variety of interfacial layers with well-tuned optical properties and electronic structures have been designed, 
synthesized, and incorporated into bulk heterojunction PSCs. The interfacial layers include self-assembled organic 
materials, metal oxide films, and emerging materials, such as graphene oxide. The organic self-assembled layers can 
crosslink to form homogeneous, transparent, and robust layers on the ITO anodes, allowing subsequent solution-
deposition of the active layers. The resultant polymer solar cells achieve device performance comparable or superior to 
conventional solar cells using PEDOT:PSS as the IFL, but having enhanced device air-stability. The new IFL anode 
coatings can be tuned for orbital energetic matching with various active layer components. The metal oxides, NiO and 
ZnO, show great potential for application in PSCs. The p-type NiO, when used as the hole transporting/electron blocking 
layer, results in dramatically enhanced performance of P3HT/PCBM polymer solar cells with PCE up to 5%. Using ZnO 
as electron transporting/hole blocking layer, inverted PSCs achieve desired donor molecule π-orientation and vertical 
phase separation, and therefore extremely high fill factors and PCEs. Graphene oxide (GO) is also successfully employed 
as a PSC IFL, and the Langmuir-Blodgett derived GO-based solar cells achieve PCE of 7.5%, but with enhanced device 
air-stability. The results indicate the great potentials of GO as scalable, substrate-general IFL for high performance and 
environmentally stable PSCs. In addition to IFLs, state-of-the-art electron donor materials have also been reported, both 
small molecules and polymers, and BHJ polymer systems exhibit power conversion efficiencies greater than 8%. 
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