# Optics history as effective instrument for education in optics and photonics

## S.K. Stafeef and M.G. Tomilin

St.-Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, 197101, Kronverksky Pr. 49, Russia

## ABSTRACT

The education problem in optics and photonics is to draw young generation on the side of light, optical science and technology. The main goal is to prove the slogan that "physics is a small part of optics": during the thousand years optics formulated the clear worldview for humanity. In fact optics is itself presents multidisciplinary collection of independent scientific arias from one hand and was a generator of new fields of knowledge from the other hand. Optics and photonics are the regions where the fundamental problems of our reality have to be solved. The mentioned functions belonged to optics during the period of civilizations development. This is a basic idea of books serial by S. Stafeev and M. Tomilin "Five Millennium of Optics" including 3 volumes. The first volume devoted to optics prehistory was edit in 2006 in Russian. Its main chapters devoted to relations between Sun and Life, the beginnings of human intelligence, megalithic viewfinders, gnomons and ancient temples orientation, archaic optical materials and elements. It also consist the optical riddles of that period. The volume II is devoted to Greek and Roman antiquity and is in the process of publishing. It consist the chapters on the beginning of optics, mathematical fundaments and applied optics evolution. Volume III would be devoted to Medieval and Renaissance optics history. The materials are used at our university in a course "The Modern Natural Science Conceptions" for students and graduate students. In our paper the possibilities of optics history as effective instrument for education in optics and photonics are discussed.

**Keywords**: optics prehistory; medieval and renaissance optics; ancient images, megalithic viewfinders, gnomons and temples orientation; optical theory, materials and elements; eye and vision.

#### 1. INTRODUCTION

Optics and photonics have exciting history closely tied with modern science. For receiving the harmonious education in this field it is necessary to trace the development of optics from early beginning up to current state. Such panorama of optics development arise deep interest of pupils to the subject of investigation and give fundamental knowledge. Sun light as main source of energy and basis of life was the most important object of investigation during the whole period of civilization evolution. Vision as the main source of information about the surrounded world determined the evolution of human intellect. The direct sky objects observation during thousand years helped to predict nature cycle changes and to fix man in time and space. Control of Sun, Moon and planets trajectories gave the calendar to many nations. Many megalithic facilities and observatories were built for this and religious purposes. Viewfinder as one of the first optical instrument was created as the result of ancient visual observations. Other ancient optical elements such as mirrors, lenses and magic spheres were the result of handicraft activity in metallurgy and jeweler's art. Transparent crystals processing and glass-making create the basis of ancient optical materials.

During the prehistoric period optics had a syncretic stage with ancient philosophy and religion and had a magic context. Greek and Roman antiquity was characterized by serious interest to nature of light and mechanisms of vision. The famous Greek thinkers founded the basis of geometric optics, catoptrics, dioptrics and meteors. The contribution of outstanding scientists Euclid, Archimedes and Ptolemy to optics produced a strong influence on following ages. The main achievement of middle ages was the invention of glasses, while

> Eleventh International Topical Meeting on Education and Training in Optics and Photonics, edited by K. Alan Shore, Deb Kane, Proc. of SPIE Vol. 9666, 966607 © 2009 SPIE, OSA, IEEE, ICO · doi: 10.1117/12.2207938

the main achievement of Renaissance was the development of perspective theory, demonstrating the optical knowledge penetration into fine arts technology.

In our paper the general context with selected illustrations of two our books is presented to give the common impression of collected information on civilizations history seen by optician eyes.

## 2. FIVE MILLENIUM OF OPTICS: PREHISTORY

| Introduction                    | 12 |
|---------------------------------|----|
| Chapter 1. Sun and Life         | 17 |
| 1.1. Sun messenger              | 17 |
| 1.2. Beginnings of life         | 19 |
| 1.3. Light, eye and brain       | 25 |
| 1.4. Sun-earth interconnections | 35 |
|                                 |    |

44 46

Chapter 2. The cradle of intellect 2.1. Myths, legends and symbols (fig.1)

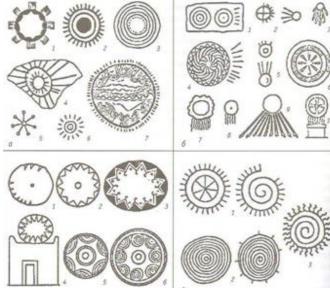



Fig.1. Sun symbols of different nations and times

2.2. Horr eye (fig.2)

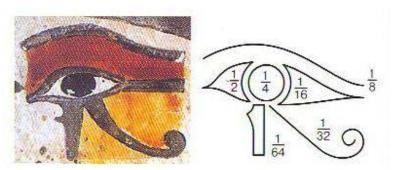



Fig.2. Horr eye and its interpretation as fractions

2.3. Images and letters

63

59

2.4. Sky cycles and calendars (fig.3)

| Fig.3. Calendar marks on bones from pal eolith. | Fig.4. Stone menhir with seculated viewfinder aperture |
|-------------------------------------------------|--------------------------------------------------------|

| Chapter 3. Megalithic viewfinders                             | 100 |
|---------------------------------------------------------------|-----|
| 3.1. Megalithic civilization and stone viewfinders (fig.4)    | 100 |
| 3.2. Linear backing. Menhirs, leis and stone ranges           | 109 |
| 3.3. Viewfinders with seculated aperture. Dolmen and dromoses | 121 |
| 3.4. Cromlechs and horizon observatories                      | 141 |
| Chapter 4. Gnomons and ancient temples orientation            | 164 |
| 4.1. Gnomons as elements of reversal backing (fig.5)          | 165 |

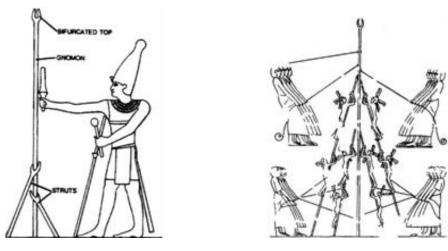
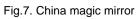




Fig.5. Gnomons in ancient Egypt

| <ul><li>4.2. Sacred symbols of ancient viewfinders</li><li>4.3. Temple complexes orientation in Europe and Asia</li><li>4.4. Temples and complexes of New World</li></ul> | 176<br>191<br>216 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Chapter 5. Archaic optics: materials and elements                                                                                                                         | 231               |
| 5.1. Bronze mirrors (fig.6)                                                                                                                                               | 231               |
| 5.2. Magic mirrors of China and Japan (fig.7)                                                                                                                             | 241               |



Fig.6. Ancient Egyptian mirror



- 5.3. Natural crystals and its processing5.3. Lenses and spheres (fig.8)

252 262



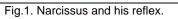
Fig.8. Ancient crystalline lens from Ninevia, VIII BC.

| 5.4. First glass                                                  | 273 |
|-------------------------------------------------------------------|-----|
| Application. Ancient optical mysteries                            | 282 |
| 1. Mystery of megaliths                                           | 282 |
| <ol><li>Pyramids, Orion constellation and Zodiac cycles</li></ol> | 284 |
| 3. Myths of ancient Egypt and Arcaim                              | 286 |
| 4. Viewfinders for skies                                          | 289 |
| 5. Ancient telescope (fig.9)                                      | 290 |





Fig.9. Ancient telescope? Fig.10. Quartz scull illustrate HT handling


6. Quartz sculls (fig 10). Conclusion Literature (295 pos.)

294 296

## 3. FIVE MILLENIUM OF OPTICS: ANTIQUITY

7

| Introduction                                                                                    | 7        |
|-------------------------------------------------------------------------------------------------|----------|
| Part I. Principles of antique optics                                                            | 26       |
| Chapter 1. Antique mythology and light metaphysics<br>1.1. Light and vision in mythology (fig1) | 27<br>29 |
|                                                                                                 |          |



| 1.2. Metaphysics and natural philosophy of light         | 34  |
|----------------------------------------------------------|-----|
| 1.3. Color symbolism and antique chromatism              | 41  |
| Chapter 2. Main stages of scientific knowledge evolution | 52  |
| 2.1. Classification of scientific disciplines            | 54  |
| 2.2. Main stages of antique science (fig.2)              | 59  |
| 2.3. Optics among antique disciplines                    | 92  |
| 2.4. Structure of antique optics                         | 96  |
| Chapter 3. Physical theories of visual perception        | 104 |
| 3.1. Extramission (fig.3)                                | 111 |
| 3.2. Intramission                                        | 114 |

Fig.2. Plato Academy.




Fig.3.Ocular beams

| 3.3. Sinaugogia and sinestasis           | 121 |
|------------------------------------------|-----|
| 3.4. Acsidensia                          | 132 |
| 3.5. Color's nature and color perception | 136 |
|                                          |     |

148 150

Chapter 4. Vision physiology and psychology 4.1. Vision physiology. Eye models (fig.4)



Fig.4. Galen's model of eye

| <ul><li>4.2. Vision psychology. Optical illusions</li><li>4.3. Vision and cognition</li></ul>                                                                                                                                                                                                  | 165<br>173                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Part II. Mathematical principles of optics                                                                                                                                                                                                                                                     | 190                                    |
| <ul> <li>Chapter 5. Studies of direct vision</li> <li>5.1. Optics of vision</li> <li>5.2. Direct vision in Euclid "Optics"</li> <li>5.3. Direct vision in Archimedes and Hero "Catoptrics"</li> <li>5.4. Direct vision in Ptolemy "Optics"</li> <li>5.5. Illusions of direct vision</li> </ul> | 191<br>194<br>201<br>206<br>209<br>216 |
| Chapter 6. Catoptrics<br>6.1. Euclid's catoptrics<br>6.2 Archimedes' and Hero's catoptrics<br>6.3. Catoptrics theorems in Ptolemy "Optics"<br>6.4. Multiple mirror systems and burning mirrors<br>6.5 Archimedes' burning mirrors (fig.5)                                                      | 220<br>222<br>227<br>230<br>241<br>248 |



Fig.5. Antique mosaic with the scene of Archimedes death

| Chapter 7. Dioptrics<br>7.1. Ptolemy's theoretical analysis of refraction<br>7.2. Ptolemy experiments with light refraction<br>7.3 Atmosphere refraction<br>7.4. Localization of refractive images and their distortion | 257<br>260<br>262<br>268<br>270 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Chapter 8. Meteors                                                                                                                                                                                                      | 276                             |
| 8.1. Aristotle's Meteorologica                                                                                                                                                                                          | 279                             |
| 8.2. Theory of humid meteors                                                                                                                                                                                            | 283                             |
| 8.3. Theory of circular meteors (fig.6)                                                                                                                                                                                 | 286                             |



Fig.6. Antique mosaic with rainbow

| 8.4 Theory of visual rays for study meteors                                                | 291        |
|--------------------------------------------------------------------------------------------|------------|
| Part III. The beginning of applied optics                                                  | 297        |
| Chapter 9. Optical materials, elements and technologies<br>9.1. Bronze and mirrors (fig.7) | 298<br>299 |



Fig.7. Fragment of vase decoration Fig.8. Intalia



Fig.9. Antique crystal lens

| <ul> <li>9.2 Optical crystals and jewelry produces (Fig.8)</li> <li>9.3. Crystal lenses (fig.9)</li> <li>9.4. Schliemann lenses and Nero monocle</li> <li>9.5. Crystal spheres. Antique telescope</li> <li>9.6. Glasses and decoration produces</li> <li>9.7 Mosaics from smalt</li> </ul> | 304<br>308<br>313<br>317<br>322<br>331 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Chapter 10. First optical instruments                                                                                                                                                                                                                                                      | 341                                    |
| 10.1. Gnomonic                                                                                                                                                                                                                                                                             | 344                                    |

| 10.2 Evolution of viewfinders                   | 356 |
|-------------------------------------------------|-----|
| 10.3. Lamps                                     | 364 |
| 10.4. Lighthouses and light telegraph           | 369 |
| 10.5. Imaging optical systems: myth or reality? | 375 |
| Chapter 11. Optics and arts                     | 382 |
| 11.1. Paintings (fig.10)                        | 385 |



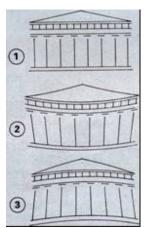



Fig.11. Optics in architecture

464

Fig.10 Fragment of antique vase decoration

11.2. Scenography 391 11.3 Sculpture 396 11.4 Architecture (fig.11) 398 11.5. Theatre 404 Conclusion 413 Applications 440 Archit and optics 440 Lucretsy and vision 444 Theofrast 458

Literature (393 pos.)

We hope that brief review will give the common impression about the context of our books. The conference on education and training in optics and photonics at Technium OpTIC at St. Asaph is a good opportunity to discuss possible profit of translating two volumes of "FIVE MILLENIUM OF OPTICS" into English. The authors use the study of optics history for education in optics and photonics themselves and recommend other specialist to follow their practice.