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Abstract

A conventional optical system can be regarded as a special type of linear system and can thus be
treated accordingly. The scalar representation in its paraxial approximation lends itself to a particularly
simple analysis. Employing an operator representation from a linear-systems point of view, introduces
the senior engineering student to Fourier optics in the most natural and straight forward way. This
approach eliminates the need for manipulating complicated integral expressions and leads to better
insight into the physical processes.

1 INTRODUCTION
The approach presented in this paper is implemented, for more than ten years, as part of a senior level
course on electro-optical systems. The first part of this course is dedicated to an extensive treatment
of Fourier optics [1] which is covered in about 18 class hours including lectures and exercises. This is
less than half the time required by conventional texts, thanks to the shorthand notation of the Operator
Algebra [2J-[5J. As a prerequisite for this course, it is assumed that the students have a basic background
of linear-systems analysis and electromagnetic field theory.

The course starts with an introductory presentation of the solution to the homogeneous wave equation
which is then successively approximated by quasi-monochromatic, scalar, and finally, paraxial approxi-
mations. The notion of wavefront is introduced with the specific examples of plane waves and spherical
waves that can be used for the linear decomposition of more complex wave fronts.

The main theme of the course follows after these introductory remarks with a spherical wave, generated
by a point source, considered as the impulse response of free space. After this, the Fresnel-Kirchhoff
diffraction integral [1] is a straight forward consequence of the linearity of the wave equation. The
operator notation provides various shorthand forms of the diffraction integral and generates an excellent
tool to analyze, understand, and synthesize optical systems.

The rest of this paper is derived from the notes of this course and may serve as the framework for
similar courses. The references should be helpful for filing the gaps, preparing examples and expanding
the scope.

2 ANALYTIC SIGNAL REPRESENTATION

The propagation of light and its macroscopic interaction with material objects can, in most cases, be
represented by Maxwell's equations. These equations are the fundamentals of classical electromagnetic
theory, but they can be solved exactly only for highly simplified conditions. Fortunately, a wide variety
of physical phenomena can be accounted for and described fairly well by employing several simplifying
assumptions.

Maxwell's equations can be manipulated to derive the wave equation, the solution of which describes
the propagation of electromagnetic fields, the electric field vector, E(x, y, z,t), and the magnetic field
vector, H(x, y, z, t). Since Maxwell's equations contain a unique relationship between these two vectors,
one of them is usually adequate for a complete representation of the field. For mathematical convenience
the field vectors are evaluated as complex analytic signals with the understanding that only their real
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parts have actual physical meaning. Of course, some useful information about the behavior of the fields
is contained in the imaginary part as well.

The orientation of the field vector determines the wave's polarization state. If the orientation is con-
stant in space and time, then the wave is called plane polarized (or linearly polarized). If the orientation
rotates the polarization is said to be circular or elliptic while a completely random variation results in
unpolarized waves. Isotropic media have no preferred orientations, therefore they cannot be sensitive to
the polarization state of light propagating through them.

In many practical situations only isotropic media are involved and the anisotropic character of optical
components can be neglected. For these situations the scalar approximation, where the vector nature of
the fields is ignored, can be readily applied.

Advanced laser technology provided a wide selection of narrow band-width light sources. The light
emerging from an idealized source of this kind can be represented by a coherent, quasi-monochromatic
signal of the form,

E(x,y,z,t) — E't(x,y,z,t)e't (1)

where the variation of the complex amplitude (or complex envelope), E'(x, y, z, t), in time is assumed to
be slow as compared to the mean frequency, ii = w/2ir.

3 WAVE FRONTS

In macroscopic optical systems light has usually a preferred direction of propagation. In such systems
it is convenient to decompose the spatial function of the complex amplitude in a similar way as the
temporal part in Eq. (1). Doing this within the framework of the scalar approximation, the complex
amplitude can be written in the form,

E'(x, y, z, t) —÷ u(x, y, z, t) = A(x, y, z, (2)

where all quantities on the right-hand side of the equation are real. The coordinate vector, r, is given by,

r=th+y+z2; IrIr=/x2+y2+z2 (3)

with : denoting unit vectors. In an isotropic and homogeneous medium the orientation of the wave vector,
k, is in the direction of the Pointing vector, i.e. the direction of energy propagation, and its magnitude
is related to the wavelength of the radiation, A, by the relation, Iki k = 2ir/A. Like in the temporal
decomposition, Eq. (2) has a useful meaning only if the spatial variations of A, q5 and k are slow as
compared to the wavelength, A. If we equate the scalar product of the wave vector and the radius vector,
to a constant,

k(x,y,z,t). r = xk(x,y,z,t)+ yk(x,y,z,t)+ zk(x,y,z,t) = comst. (4)

we obtain the equation of a surface in three-dimensional space. Ignoring the possible variation in time
this surface is usually referred to as the wave front.

Maxwell's equations are linear in the electromagnetic field components as long as the characteristics
of the media in the system do not depend on the fields themselves. Throughout this paper only linear
media are considered, thus the principle of linear superposition holds. That is, a general solution can be
found by a linear superposition of partial solutions. Stated in a different way, any complicated wave front
can be expressed in terms of a linear superposition of simpler wave fronts, or elementary wave fronts.
From a mathematical point of view this is similar to the decomposition of a complicated function into
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a set of orthonormal functions like a Fourier decomposition into a set of cosine and sine functions. Two
such simple idealized wave fronts are useful in particularly: The planar and spherical wave fronts. For a
planar wave front k is a constant and the relation,

k . r = xk + yk + zk = const. (5)

represents a plane in three-dimensional space. In particular, a plane wave propagating in the positive z
direction has the wave vector, k = k and Eq. (5) represents planes normal to the z-axis.

A spherical wave with its center at the origin is represented by the wave vector k =ki thus

k . r= icr = cortst. (6)

is a sphere with radius r = const./k. Both, the ideal spherical and plane waves are idealized mathematical
entities and cannot be realized in practice since they involve singularities or infinite system requirements.
Nevertheless, they are good approximations for various situations and any wave form can be represented
as a linear superposition of an infinite number of either of these fundamental wave forms.

4 DIFFRACTION
Our final objective is to determine the complex amplitude distribution over some output region of an

optical system when the distribution over an input region is known. In most practical cases the optical
system is enclosed between two planes that represent the output and input regions (Fig. 1). Starting
from propagation in free space, we shall show that the corresponding complex amplitude distributions
are related to each other by a linear operator which we shall call a transfer operator. For this purpose we

uout = U /
uin uGut

Optical System

//
Figure 1: General optical system described by its transfer operator.

note that an ideal point source of unit magnitude, located at the origin, emits a spherical wave given by,

0(r) = (7)
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Apart from the spherical wave front, this expression contains the 1/r dependence which is required for
energy conservation and the normalization factor, j.A,which will be justified later. A coherent radiating
object can be represented as a distribution of point sources. Since Maxwell's equations are linear, the
field distribution due to several sources will be a linear superposition of the field from all individual
contributions. This is analogous to a linear system which responds to an input by a linear superposition
of its components. Considering free space as a position invariant linear system, the spherical wave of
Eq. (7) can be considered as its impulse response, or point spread function (PSF). Accordingly, if the
source distribution is given by a function u(x, y, z, t), the complex amplitude distribution at a different
location can be evaluated by the convolution integral,

Uot(X,y, Z, t) = u(x, y, z, t) * 0(r) (8)

where we assumed that the speed oflight is infinite as compared to the size of the system and time delays
can be ignored accordingly. With this assumption in mind, the time variable will be suppressed in the
following discussions, for the sake of simplicity. The convolution is, in principle, to be evaluated in three
dimensions. In most optical systems, however, the source distribution is given over some plane and the
output is detected over another plane, parallel to the input plane and situated at some distance d (see
Fig. 1). It is convenient, therefore, to choose a coordinate system where light propagates mainly in the
positive z direction and the xy plane coinciding with the input plane. The output plane is also normal
to the z-axis at z = d.

Even for this relatively simple system, the convolution integral of Eq. (8) is quite complicated. This,
however, can be substantially simplified if the source and output regions are small as compared to the
distance d. In this case we may use the paraxial approximation which concerns the distance, r (Eq. 3),
which can be written in the form.

r = zl + 2 2
(i + x2+Y2)

(9)

Using this paraxial approximation for the PSF of free space (7), it can be reduced to,

0(r) = (10)

where we introduced the quadratic phase factor,

Q [] E e3(i) (11)

and approximated r in the denominator by d. Using Eq. (10) for the PSF, the convolution integral (8)
reduces to two dimensions and can be written in the form,

1
u0(x,y,d)= Q [] *uj(x,y,0) (12)

The above relation is a shorthand for the Fresnel-Kirchhoff diffraction integral as can be verified by
writing explicitly the convolution operation:

jkd
u0(x, y, d) = /[ y', 0)dx'dy'. (13)

3 J J—oo
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Evaluating the squares in the exponent, rearranging terms and resubstituting the notation for the
quadratic phase factor, this expression can be rewritten in the form,

u0t(x, y, d) = cd [] I L (vx'+YY')Q [] u(x', y', O)dx'dy' . (14)

In this expression the quadratic phase factors are considered as operators in the sense that their variables
are to be taken the same as those of the expression on their right. Continuing this line of argument we
observe that the integral is a properly scaled, two-dimensional Fourier transformation (FT). To simplify
the notation we define a generic FT operator by the relation,

Ff(x, y) = J i_: ei2('+')f(xI,y')dx'dy' , (15)

and a scaling operator,
V[a]f(x, y) = f(ax, ay) (16)

for any two-dimensional function f(x, y). Each operator is assumed to operate on the whole expression
on its right, unless enclosed in brackets. It should be noted that the definition of the FT operator is
correct mathematically but it needs a proper scaling to make it dimensionally and physically meaningful.

With the help of the operators defined above, the diffraction integral can be written in the form,

y, d) = -Q [] V [] FQ [] u(x, y, 0) . (17)

or,
u0(x, y, d) = R[dJu(x, y, 0) (18)

where we defined the free space propagation operator (FPO) by the relation,

7.[d] = ;Q [] V [] :/rQ [] (19)

Two other expressions for the FPO can be derived directly from Eq. (12): First of all, one may
directly write,

= [] * . (20)

Alternatively, we may operate on the whole expression by the FT operator,

Fu0(x, y, d) = !- {JQ [] } Fj,(x, y, 0) (21)

where the convolution theorem [1] of the FT was used. From conventional Fourier analysis we obtain
that the FT of a quadratic phase factor is a quadratic phase factor too:

TQ [] = jAdQ{—)2d} (22)

Substituting into Eq. (21) and performing an inverse FT on the result, leads to,

u0(x,y,d) = (23)
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Thus the third expression for the FPO can be written as,

R.[dJ = e'".F1Q{_A2dJ.F . (24)

Relation (22) which was used to derive this last representation of the FPO is one of the commutation
relations among the three basic operators. It is useful to list some of the others here too: By their
definition, the Q and V operators satisfy the commutation relations,

Q[aJ Q[bJ = Q[a + b] . (25)

V[aJV[b] = V[ab] ; (26)

V[a]Q[b] = Q[a2bJV[a] ; (27)

Other relations can be readily derived from Fourier analysis:

V[a].F = -FV [:] ; (28)

.FJ: v[—1] ; :J:-—l = 1 ; (29)

At this point we are equipped with the basic tools of diffraction theory and can also justify the
normalization factor used in the definition of the spherical wave of Eq. (7). This factor was chosen in
such a way that a plane wave propagating in the z direction should retain its form. Since the complex
amplitude distribution of such a plane wave is constant, this constant must be retained, except for the
longitudinal phase accumulated during propagation. Operating with the FPO of Eq. (19) on a constant,
C, we obtain the output distribution as,

u0=7[d]c= Q [] V [] JQ [] c . (30)

Using relation (22) we obtain,

uout = 1[d]c = eikdQ [1] v [] Q[—\2dJc . (31)

Substitution of the commutation relations Eqs. (27) and (25) reduces this relation to,

UOtLt 'R4d]c = , (32)

as it should be, proving the proper choice of the normalization constant.
To end this section we point out that the region of validity of the approximations underlying the

above treatment constitute the Fresnel region while the Fraunhofer region, the far field, is obtained for
large distances where Q[1/d] —÷ 1 and the FPO (Eq. 19) reduces to a FT.

5 THIN OPTICAL ELEMENTS
In the previous section we described the propagation of a complex amplitude distribution through free

space. To make an optical system one needs to assemble a set of optical components and place them at
well defined positions. This section is devoted to the definition of the most fundamental optical elements,
the thin dielectric slab, the thin prism and the thin lens. A thin optical element is defined as an element
which operates on the complex amplitude as a multiplicative factor and diffraction can be ignored within
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Figure 2: Thin optical elements. a) the dielectric slab; b) the thin prism; c) the thin lens

the element. In other words, a thin optical element can be compressed into an equivalent "transparency"
of zero thickness. A distribution incident on a thin optical element will emerge as,

UQut Tu (33)

where T is the transfer function of the element.

5.1 The thin dielectric slab
The thin dielectric slab (Fig. 2a) adds a constant phase to a propagating wave (ignoring Fresnel reflec-
tions). A plane wave, exp(—jkz), incident on a dielectric slab of thickness d and refractive index n, will
emerge as exp[—jk(z + md)] instead of exp{—jk(z + d)}, without the slab. Thus, the effect of the slab may
be described by the transfer function T according to the relations,

e_jk(z+) = Te_jk(7) _ T = (34)

5.2 The thin prism
The thin prism (Fig. 2b) is a dielectric slab with its thickness depending on position. In the special case
shown, d = ax, where a is tan(a) ( a for the small angle of a thin prism). Substituting into Eq. (34)
we obtain,

T = —jkd(x)(n—1) = E c[a(n — 1)] (35)

where we defined the linear phase factor, [d] which, in general, has a vector label since the prism can
be oriented in any direction. In fact, the linear phase represents a plane wave propagating in an off axis
direction when the paraxial approximation is used. Since the linear phase factor is frequently encountered,
it is useful to list some of its relations with other operators:

= g[a+ (36)

V[bJc[ni] = [ñib]V[b] ; (37)

= S{s'/A}F; (38)
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where S{(x)s + s] is the shift operator defined by,

S[(x)s + s]f(x, y)= f(x — s, y — sw). (39)

It should be noted here that relation (38) is to be considered always in conjunction with a scaling operator
to make it dimensionally correct.

5.3 The thin lens
The thin lens (Fig. 2c) is a dielectric medium enclosed between two spherical surfaces. The position
dependent thickness can be determined from simple geometrical considerations. To a first approximation
we obtain d = a — (1/2R1 + l/2R2)(x2 + y2), where R1 and 1?2 are the two radii of curvature and a is
the thickness of the lens at its center. Thus the transfer function of the thin lens can be written as,

where the focal length, f is defined by,

T = e_j ()(n_1) = jka(n-1) Q [
1] (40)

(41)

In the rest of this work the constant phase factor in Eq. (40) will be ignored and the lens transfer function
will be represented by the quadratic phase factor.

6 OPTICAL SYSTEMS CONTAINING THIN LENSES

The simplest operative optical system is composed of a thin lens enclosed between two free space
sections (Fig. 3). The input distribution is operated on by an FPO through a distance a, the result is

un

a b

Figure 3: Optical system with a thin lens of focal length f

multiplied by the quadratic phase factor of the lens and then a second FPO operates through a distance
b. Thus the whole optical system can be represented by a transfer operator, T, given by,
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This expression can be manipulated using the relations among the operators to derive various functions
of the optical system. Two examples will be presented here.

6.1 Imaging with a thin lens
Substituting the representation of Eq. (19) for the two FPOs in Eq. (42) we obtain,

jk(b+a) 1 1 1 i i iT =
-A2ba [] [] FQ [] Q [-i] [I V [] FQ [] , (43)

where the constant factors from the two FPOs were combined. Using relation (25) leads to,

jk(b+a) 1 i i i i i
T=A2bQ[]V[]FQ[_j+_]V[frQ[_], (44)

Inserting the classical imaging condition,
1 1 1+=j (45)

eliminates the central Q factor (Q[O] = 1). Using subsequently the various commutation relations, (Eqs.
29, 28, 27, 26 and 25) reduces the transfer operator to,

T = ejka)Q [ (i + ) ] V [- ] . (46)

The meaning of this operator is that the input distribution is reconstructed with a modified scale (mag-
nification is —b/a with the proper intensity adjustment by the constant factor) and a quadratic phase
distortion which can be ignored if only the intensity is measured. To eliminate the quadratic phase, an
additional lens is required. For example, a field lens, having a focal length f' given by the relation,

=(i+) (47)

can be attached to the output plane.

6.2 Fourier transformation with a thin lens
Returning to the generic transfer operator of Eq. (42) we may write the left-hand side FPO in the form
of Eq. (19) and the right-hand side FPO in the form of Eq. (24) to obtain,

T = eja)
[] [] :FQ [] Q [4] ;c1Q [_A2a] j , (48)

If we take b = 1 the middle Q operators are canceled and then the product is canceled too.
Commuting now V with the Q on its right leads to,

ejc(f) 1 ( a\ I 1T =
jAf J 1) V , (49)

This is a FT with the proper scale and a quadratic phase factor which can be eliminated by taking
a = b = f.

In this section we treated the generic optical system with one lens. This system can be considered
as a building block which can be cascaded to construct more complicated optical system. For example,
a simple telescope and an optical correlator are composed of a cascade of two FT systems, while a
microscope is a cascade of two imaging systems.
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7 CONCLUSIONS
We presented here the fundamentals of Fourier optics from a linear-systems point of view. This frame-

work is adequate for solving most problems of optical system design and analysis encountered in the course
and can be extended to such fields as holography [4, 5], speckle pattern analysis [6], and aberrations [7].
The treatment can be extended further and made mathematically more rigorous by involving canonical
operators and group theory [8]-[14]. In the more advanced and rigorous representation the operators are
defined in a normalized form where also the FT operator is dimensionally correct. However, there the
operator manipulations are slightly more complicated.
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