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Introduction

The Forty-Second conference on Infrared 
Technology and Applications was held the 
week of April 18-21, 2016 at the Baltimore 
Convention Center in Baltimore, Maryland. 
The agenda was divided into 15 sessions:
1. NIR/SWIR FPAs and Applications
2.  Infrared in Air and Space
3. Selected Applications
4. Type II Superlattice FPAs I
5. Type II Superlattice FPAs II
6. Keynote
7. FPA Substrates
8. QWIP and CQD
9. HOT: High Operating Temperature FPAs I

10. HOT: High Operating Temperature FPAs II
11. Uncooled FPAs and Applications I
12. HgCdTe
13. A Word from the Master
14. Smart Processing I
15. Smart Processing II

Note that two new conferences have been initiated to 
cover the topics of optics (Advanced Optics for De-
fense Applications: UV through LWIR) and coolers 
(Tri-Technology Device Refrigeration) that were pre-
viously part of this conference.

In addition, there were a number of poster papers 
presented for discussion on Tuesday evening—these 
have been added to the 15 sessions in the Proceed-
ings. Highlights of five topical areas are summarized 
below:

• Photon Detectors
• Uncooled Detectors
• Smart Processing
• Applications
• Keynote Address

Photon Detectors

NIR/SWIR FPAs and Applications

A number of trends were emphasized in near infrared 
and shortwave infrared in presentations at this confer-
ence:

• The continuing emphasis on InGaAs FPAs in
which pixel sizes have been reduced to 10 µm
and operation has been achieved without a
thermoelectric cooler over a wide temperature
range.

• Extended wavelength operation which has
been demonstrated in InGaAs, HgCdTe and
T2SL (Type 2 Superlattice) SWIR FPAs.

• In the NIR spectrum, imagers made with ultra-
fast-laser-processed “black silicon” combined
with low-noise backside illuminated CMOS,
have achieved enhanced quantum efficien-
cies and low-light-level sensitivities below 1
mLux at 60 Hz.

In order to address the power consumption problem, 
one manufacturer developed a camera without a Ther-
mo-Electric Cooler (TEC-less) 640 × 512 InGaAs 
camera with temperature-based non uniformity cor-
rections that allow the power consumption to be 1.2 
to 1.3 W over a -30 to 60 °C temperature range —see 
Fig. 1.

Fig. 1 Power vs. temperature comparing the TEC-
less camera and the TEC variant.
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A 1280 × 1024 InGaAs FPA with 10 µm pixels and 
an asynchronous laser pulse detection mode has been 
fabricated, thus providing both passive and active im-
aging in low-light-level conditions. An image from 
this FPA is shown in Figure 2.

The latest results on an innovative InGaAs/GaAsSb 
T2SL SWIR FPA with 2.35 µm cutoff were reported. 
Dark currents were less than for SWIR HgCdTe FPAs. 
With thicker InGaAs the cutoff can be extended to 
2.55 µm.

In other SWIR superlattice work, InAs/InAs1-xSbx/
AlAs1-xSbx T2SL SWIR detectors on GaSb substrates, 
had a dark current density of 1.3×10-8 A/cm2 at 200 K, 
with 36% quantum efficiency. 

In HgCdTe, SWIR FPAs with 2.5 µm cutoff, 640 × 
512 formats with 15 µm pixels operating in both pas-
sive and active modes were demonstrated. These are 
currently made by means of LPE but for production 
transfer to MBE on GaAs substrates is expected.

For passive imaging, the dark current in Fig.3 is seen 
to be less than one order of magnitude higher than that 
for the empirical Rule 07. Work is ongoing to reduce 
the dark current further.

For active imaging with APDs (Avalanche 
PhotoDiodes) special ROICs were designed for Gated 
Viewing (GV) with a 1.57 µm Nd:YAG laser illumi-
nator

Type II superlattice FPAs

There were a total of ten papers in the two sessions 
devoted to Type II Superlattice and Barrier detectors, 
and several more on this subject in the Poster session. 
This reflects the continued strong interest in the po-
tential performance advantages that this technology 
has been predicted to have theoretically—long carrier 
lifetimes and a high optical absorption coefficient. Ex-
perimentally, lifetimes as long as those predicted have 
not yet been achieved. Lifetimes are still shorter than 
for HgCdTe with comparable bandgaps. This year 
continued a larger focus on LWIR devices.

Passivation of Type II structures using the Gibbs free 
energy was the focus of the first paper in the topical 
area. The authors compared ALD-deposited Al2O3, 
HfO2, TiO2, ZnO, PECVD deposited SiO2, Si3N4

 

and sulphur containing octadecanethiol (ODT) self-
assembled monolayers (SAM) passivation layers on 
InAs/GaSb pin superlattice photodetectors with cut-
off wavelength at 5.1 μm. Fig. 4 shows how the dark 
current varies with temperature for a variety of pas-
sivation choices. Best results were reported for Al2O3.

GaSb oxide was investigated with respect to its affect 
on sidewall leakage for Type II mesa structures. After 
annealing at temperatures above 300 °C, free Sb was 
detected on the surfaces that can cause sidewall leak-
age.

LWIR Type II superlattice development was updated 
in an important paper that showed R0A values for test 

Fig. 3 Dark current density vs. 1/T for 1.8 μm and 2.5 μm cut-
off FPAs compared with Rule 07.

Fig. 2  SWIR image with an existing 10 μm ROIC.
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structures and test devices clustered around 10 × and 
20 × the HgCdTe benchmark Rule 07 as shown in Fig. 
5. This development has been achieved with standard 
InAs/GaSb material that includes a majority-carrier 
barrier and that has a short lifetime ~30 nsec. Never-
theless, good imagery was shown for a 15 µm pitch 
512 × 640 FPA at 77 K having > 50 % quantum ef-
ficiency with a 9.3 µm cutoff at f/2.7 as illustrated in 
Fig. 6.

Asymmetrical MWIR InAs/GaSb superlattice pin 
photodiodes were found to have very short minority-
carrier diffusion lengths due to short lifetime of 30-
35 nsec, leading to low quantum efficiency. Results 
were improved to about 42 % quantum efficiency by 
reversing the side of the structure that was illumi-

nated. Higher QE results were found with test struc-
tures having a p-type absorber rather than an n-type 
absorber, taking advantage of the improved mobility 
of electrons compared to holes.

Development of a 6 µm cutoff MWIR Type II super-
lattice FPA was described using InAs/GaSb combined 
with barrier layers. The pin structure is illustrated in 
Fig. 7. The dark current of the pBiBn structure was 4 
× 10-7 A/cm2 at reverse bias of -20 mV, which is lower 
than that of the pin structure, 7 × 10--7 A/cm2. An FPA 
with 256 × 320 pixels and a pixel pitch of 30 μm was 
fabricated and imaged.

An approach for fabricating an antimonide FPA with-
out using indium bumps by employing a membrane-
transfer process was described.

Fig. 5 77 K dark current: comparison of Type II superlattice 
test devices and FPAs with MCT Rule 07 (solid blue line) over a 
similar range of cut-off wavelengths

Fig. 4 Temperature dependent dark current density for 
unpassivated and passivated type-II InAs/GaSb superlattice 
400 × 400 μm photodiodes at -0.5 V bias voltage.

Rule 070.4 x Rule 07

20 x Rule 0710 x Rule 07

Fig. 6 Image registered with a demonstration camera contain-
ing the 15μm pitch, 640 × 512 LW FPA, operating with F/2.7 op-
tics at 77 K and a scene distance of about 5 km.

Fig. 7 Epitaxial wafer structure
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Recent results with LWIR Type II superlattice FPAs 
was presented, including a 640 × 512 LWIR hetero-
junction InAs/GaSb T2SL camera with 15 μm pixel 
pitch. Fig. 8 illustrates an image from this FPA oper-
ated at 55 K and having a cutoff of 10.3 µm.

Ga-free InAs/InAs1-xSbx type-II superlattices were re-
ported with LWIR cutoffs and an nBn structure that is 
illustrated in Fig. 9. With a 6 µm thick absorber, the 
quantum efficiency was said to be 54 % for a sample 
with a 50 % cutoff of 10 µm at 77 K. Fig. 10 shows the 
spectral D* of this LWIR device.

Results from production and development of SWIR, 
MWIR, and LWIR Type-II superlattice InAs/GaSb 
detectors was presented. A new large array – see Fig. 
11— is being developed in a 1280 × 1024 format with 
12 μm pitch and is planned to be available in both 
MWIR and LWIR bands. Fig. 12 shows the LWIR 
spectral response.

Dual-band barrier detectors featuring two LWIR 
bands—9.2 and ~12 µm—was the subject of another 
presentation. Quantum efficiency for the two bands as 
a function of bias is shown in Fig. 13.
Large, encapsulant-free GaSb single crystals were 

Fig. 8 Image from a 640 × 512 LWIR heterojunction InAs/
GaSb T2SL camera with 15 μm pixel pitch.

Fig. 10 Detectivity spectrum of the device with a 6 µm-thick 
absorption region at -90 mV applied bias voltage in front-side illu-
mination configuration without any anti-reflection coating. Inset: 
Detectivity of the device at 7.9 µm under front-side illumination as 
a function of applied bias voltage. Detectivity is calculated based 
on the equation in the inset, where Ri is the device responsivity, J 
is the dark current density, RA is the resistance-area product, kb is 
the Boltzmann constant, and T is the operating temperature.

Fig. 9 Schematic diagram and working principle of the nBn 
photodetector. The barrier blocks the transport of majority elec-
trons, while allowing the diffusion of minority holes and photo-
generated carriers from the active region on the left.

Fig. 11 Photo of a new Type II superlattice FPA with a 
resolution of 1280 × 1024 and having 12 μm pitch pixels.

Fig. 12 LWIR Type II spectral response at 77 K as a function of 
bias, showing that the response is fully turned on already at 25 mV.
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InSb crystal growth improvements were described in 
a paper with a goal of growing 6-inch diameter <111> 
ingots weighing as much as 30 kg. Reduction of mi-
cro-resistivity striations was reported by control of the 
growth interface.

QWIP and colloidal quantum dot (CQD) detectors

An update was given on the development of resona-
tor QWIP detectors. A quantum efficiency of 37% and 
conversion efficiency of 15% in a 1.3 μm-thick active 
material and 35% QE and 21% CE in a 0.6 μm-thick 
active material. Both detectors have a cutoff at 10.5 
μm with a 2 μm bandwidth. The temperature at which 
photocurrent equals dark current is about 65 K under 
F/2 optics. The thicker detector shows a large QE po-
larity asymmetry due to nonlinear potential drop in 
the QWIP material layers. For one design, an FPA was 
measured with NE∆T of 27.2 mK, with 99.5% oper-
ability at 55 K under F/2.5 optics and 4.46 ms integra-
tion time. Fig. 15 shows an image taken with one of 
these resonator QWIP FPAs.

grown using the modified Czochralski method, yield-
ing more than seventy 150 mm wafers per crystal or 
several hundred 75 mm or 100 mm wafers per crystal. 
Fig. 14 shows one of the large boules.

Progress in the development of current substrate pol-
ishing techniques has been demonstrated to deliver a 
consistent, improved surface on GaSb wafers with a 
readily desorbed oxide for epitaxial growth according 
to a companion paper. Six wafer polishing variants 
were compared.

Fig. 14 GaSb boule capable of yield-
ing over 70 6-inch wafers.

Fig. 13 Bias-dependent QE measurements performed with 
6.5 μm and 9.75 μm filters at 78 K.

Fig. 15 Image from a QWIP FPA at V ~ -1.1 V 
bias and T = 61 K.
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QWIP production of FPAs with 640 ×  480 and 384 ×  
288 pixels with 25 μm pitch totaled nearly 200 units 
in 2015 and are projected to double in 2016. MOVPE 
was used for the growth of quantum wells on GaAs 
substrates. Fig. 16 shows a histogram of the NE∆T for 
production the larger format.

MWIR detection with HgTe colloidal quantum dots 
was reported. Fig. 17 illustrates the detector concept. 
Imagery was shown with FPAs made from this mate-
rial.

High Operating Temperature (HOT) FPAs

The goal of increasing the operating temperature of 
FPAs without sacrificing performance is motivated 
by the reduction in cooler power, improved cooler ef-
ficiency, longer cooler lifetime, smaller imager size, 
and lighter weight sensor systems that this makes pos-
sible. This goal is being pursued using HgCdTe, Type 
II superlattices, and nBn materials and has relevance 
especially in the MWIR and LWIR spectral bands.

Planar LWIR and VLWIR HgCdTe detectors in both 
p-on-n and n-on-p polarities were discussed. Ther-
mal dark currents have been significantly reduced as 
compared to ‘Tennant’s Rule 07’ in both diode polari-
ties, with quantum efficiency ≥ 60% and for operating 
temperatures between 30 K and 100 K. Fig. 18 shows 
the dark current vs. 1/lT. The demonstrated detector 
performance paves the way for a new generation of 
higher operating temperature LWIR MCT FPAs with 
< 30 mK NETD up to a 110 K detector operating tem-
perature and with good operability. This allows for the 
same dark current performance at a 20 K higher oper-
ating temperature than with previous technology.

MWIR XBn detector arrays with 10 µm pitch and 
a large 1920 × 1536 format were reported. Data for 
operation up to 150 K with a cutoff of 4.2 µm was 
shown. The dark current histogram was well behaved 
at 150 K as shown in Fig. 19.

Fig. 17 Diagram of photoconduction in a CQD de-
tector. A photon excites a CQD. The excited electron 
“hops” from dot-to-dot, generally drifting up the elec-
tric field to the anode. The “hole” is filled by electrons 
that hop up the electric field from the cathode.

Fig. 18 Thermal dark current density behavior versus 1/lT for 
p-on-n LWIR and VLWIR MCT detector devices with responsiv-
ity cut-off wavelengths at 80 K as stated in the inset. BLIP D* for 
5-stage devices with absorption QE of 70%, both under 300 K 
background with 2π field of view (FOV).

Fig. 16 Distribution of NE∆T for more than 500 production 
QWIP FPAs in a 640 ×  480 format.
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Progress in MOCVD growth of HgCdTe was de-
scribed, enabling advances in HOT detector operation.
Changing the growth orientation from <111> to 
<100> enabled higher performance operation for 13 
µm cutoff photoconductors. In addition, barrier detec-
tors were reported for both MWIR and LWIR bands. 
An n+p+BpπN+ 10 µm cutoff LWIR structure enabled 
operation with carrier extraction at 230 K. Fig. 20 il-
lustrates this structure.

SWIR Type II superlattice detectors using Ga-free 
material were reported with operation in the 200 - 300 
K range and spectral cutoffs—as shown in Fig. 21—
of 1.7 - 1.8 µm. At 300 K, the device exhibited a spe-
cific detectivity of 6.45 × 1010 Jones with a 300 K 2π 
field of view.

SWIR interband cascade detectors having a 3 µm cut-
off and operating between 280 and 340 K were pre- sented. D* was limited by Johnson noise, as shown 

in Fig. 22. A mid-wave device was reported to have 
response approaching 1 GHz.

Recent developments achieved in terms of HOT MCT 
extrinsic p on n technology, blue MW band (4.2 μm 
at 150 K) and extended MW band (5.3 μm at 130 K) 
were reviewed. Fig. 23 shows the dark current for both 
red and blue bands vs. temperature compared to Rule 
07. This paper also discusses reduction of 1/f noise 
and the properties of random telegraph noise or signal 
(RTN or RTS). Fig. 24 shows how the activation en-
ergy of RTN noise varies with bandgap.

In0.982Al0.018Sb diodes were fabricated on InSb sub-
strates, followed by mesa diode fabrication. The 4.8 
µm cutoff devices were imaged at 80 and 110 K.

Fig. 19 Histogram of the dark current at 150 
K from all pixels of the 1920 × 1536 FPA.

Fig. 20 LWIR n+p+BpπN+ HgCdTe structure and schematic 
photodiode band diagram. x is the alloy composition, NA is the ac-
ceptor concentration, ND is the donor concentration and π denotes 
the absorber region with low p-type extrinsic concentration.

Fig. 21 Saturated 200 and 300 K quantum ef-
ficiency spectrum of the device under zero-bias 
condition in frontside illumination configuration 
without any anti-reflection coating. Inset: The %50 
cut-off wavelength variation of the device vs. tem-
perature between 200 to 300 K.

Fig. 22 Johnson-noise limited detectivity for two- 
and three-stage interband cascade devices.
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HgCdTe

The HgCdTe alloy detector—characterized by a high 
absorption coefficient and a long lifetime—continues 
to dominate the choice for a broad range of infrared 
applications. Aside from applications that are ideal for 
either InSb in the MWIR spectral band, or InGaAs 
in the 1.7 μm SWIR band, or those that can utilize 
uncooled FPAs, HgCdTe continues to be the most 
popular choice. Papers in this section update how 
HgCdTe is continuing to develop and evolve. Papers 
on this topic were presented in the session on HgCdTe 
detectors as well as in the SWIR and HOT sessions, 
the Applications sessions, and in the Poster session.

HgCdTe for a variety of space missions was reviewed. 
This included SWIR bands around 2 - 3 µm for astro-
physics, MWIR and LWIR bands for exoplanet dis-
covery, and VLWIR for atmospheric sounding. Fig. 25 
shows an arrhenius plot for some MWIR and LWIR 
devices and for both diode polarities. Fig. 26 shows 
dark current at 78 K for both diode polarities as a 
function of the cutoff wavelength.

Progress has been made in the development of 8 µm 
pitch MOVPE-grown HgCdTe photodiodes in a 1280 
× 1024 format. A major effort has gone into raising the 
operating temperature of these 5+ µm cutoff MWIR 
devices. Fig. 27 shows the median NE∆T as a func-
tion of operating temperature for these FPAs. An im-
age of a container ship taken with this array at ~1.6 
km distance using 75 mm f/2.8 optics is shown in Fig. 
28. An LWIR FPA based upon this format is under 
consideration, as well as additional formats, including 
a full 1080p format array, 4 K × 4 K arrays for surveil-
lance, and smaller formats for handheld applications.

Fig. 24 Random telegraph noise activation energies as a func-
tion of the bandgap energy.

Fig. 25 Arrhenius plot with dark current data for MWIR-LWIR 
n/p and p/n data

Fig. 26 Summary of dark currents measured at 78K for both n/p 
and p/n diodes from LWIR up to VLWIR spectral ranges.

Fig. 23 Mean dark current vs. temperature for MWIR red 
and blue bands compared with Rule 07.
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The development of prototype MWIR—5.4 µm cut-
off—XGA format (1024 × 768) HgCdTe detector ar-
rays with 10 μm pitch were reported. The associated 
readout provided 2.8 × 106 charge storage in an in-
tegrate-while-read mode, and 4.9 × 106 for integrate-

then-read (ITR) op-
eration. Smaller 
pixel development 
for LWIR and 3rd 
gen is using 12 µm 
pixels in a 1280 × 
720 format. Fig. 29 
shows the histogram 
of an LWIR array in 
this format. The ITR 
mode with this larg-
er pixel has a charge 
storage capacity of 
8.3 × 106 electrons.

MBE growth of HgCdTe on GaSb substrates has been 
explored and compared with growth on GaAs and 
CdZnTe. Fig. 30 shows the lattice and coefficient of 
thermal expansion of these materials. GaSb was found 
to have a lower etch pit density compared to GaAs and 
comparable X-ray rocking curve value. Device devel-
opment has concentrated on nBn detector structures. 
These were grown to compare a solid barrier layer 
with a superlattice barrier in order minimize the volt-
age needed to overcome the minority carrier barrier. 
Fig. 31 shows the structure for the case of a superlat-
tice barrier.

A presentation describing the transition to smaller 
pitch—15 to 10 µm—was given covering both n-on-p 
and p-on-n diode polarities. Dark currents were sig-
nificantly lower for the p-on-n polarity, but the smaller 
diodes in this case showed excess dark current ~30 %. 
This may have been due to the test structure design 
interacting with the long diffusion lengths (25 -30 µm) 
in this case—see Fig. 32.

Fig. 27 NE∆T for 1280 × 1024 FPAs having 8 μm pitch pixels 
at ƒ/2.8 as a function of the operating temperature.

Fig. 28 Image of a container ship at ~ 1.6 km being unloaded 
taken by an MWIR HgCdTe array with 75 mm f/2.8 optics.

Fig. 29 NE∆T for a 9 µm cutoff ar-
ray with 12 µm pixels in a 1280 × 720 
format.

Fig. 30 Lattice and CTE mismatch between HgCdTe and sev-
eral potential alternative substrates.

Fig. 31 HgCdTe nBn structure hav-
ing a superlattice barrier layer.
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VLWIR (12 - 15 µm) photodiodes for atmospheric 
sounding were studied, as well as electron avalanche 
photodiodes for high speed and low-flux applications. 
Excess currents were modeled and compared to the 
reverse-bias characteristics for VLWIR devices. Is-
sues with passivation were found to be critical.

Cap-layer variations including thermally-evaporated 
(TE) ZnS, TE CdTe, electron beam evaporated (EBE) 
CdTe and in-situ CdTe/ZnTe grown by MBE were 
compared with respect to their effect on As-ion im-
plantation. Channeling effects were observed for thin 
layers of evaporated CdTe. An optimized thickness of 
ZnS was found to obtain the deepest As indiffusion af-
ter high temperature annealing, and the end-of-range 
(EOR) depth is linearly proportional to the thickness 
ratio of a-MCT layer/damage layer.

Inductively-coupled plasma etching of HgCdTe FPAs 
at cryogenic temperatures—123 K—was described. 
Fig. 33 shows an example of the etch profile.

A paper was presented on the bulk growth of <111> 
seeded 75 mm diameter cadmium zinc telluride (CZT) 
using the traveling heater method (THM) which al-
lows for growth at lower temperatures. The report 
summarized work on development of epitaxy-ready 
surface finishing of THM-grown Cd0.96Zn0.04Te sub-
strates. Xray rocking curve values averaged 22 ± 3 
arc sec. The crystals were reported to be free of twins 
and slip and GDMS measurements reported less than 
2 ppba of copper impurities.

Uncooled Detectors

Participation in the uncooled session was down this 
year, largely due to the reluctance of U.S. companies 
to show their competitive hands, and also due to per-
sistent U.S. government restrictions on release of in-
formation to an international audience. Nevertheless, 
several papers were presented showing advances in 
absorption, thermal isolation and limitations of pixel 
size reduction.

Four papers – one from China, two from Japan and 
one from the U.S. – addressed wavelength-selective 
absorption using plasmonic structures. One of the 
Japanese papers was presented in the poster session. 
These papers showed the dependence of the absorp-
tion spectrum and absorption efficiency on the feature 
sizes of the structures in the absorbing layer. The key 
advantage of these structures is that different pixels 
can have different spectral and/or different polariza-
tion characteristics within the same array, thus facili-
tating multi-spectral imaging in a manner akin to color 
visual sensors and displays. A disadvantage is that the 
plasmonic structures are generally more massive than 
the usual semi-transparent thin films used in resonant 
absorbers, and therefore detectors using them have 
somewhat longer thermal time constants.

Another poster paper from Japan explored the poten-
tial use of graphene as infrared detector. The paper 
showed that the use of a plasmonic metamaterial ab-
sorber could substantially enhance the ordinarily low 
absorption coefficient of graphene.

A presentation from Germany described a novel nano-
tube thermal isolation structure. The structures are 

Fig. 32 Extracted minority carrier mobility and minority carrier 
diffusion lenght (inset) from a LWIR 15 μm pitch array.

Fig. 33 The profile after an optimized plasma etch.
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vertical rather than the usual lateral structures, and 
they are created by coating the walls of narrow vias 
between the top of the detector and the substrate. The 
multilayer coatings within the nanotubes provide both 
mechanical support and electrical contact, while also 
providing thermal isolation. This method virtually 
eliminates the loss of active area usually associated 
with excellent thermal isolation, but, at first glance, 
limits available thermal isolation by the fact that the 
length of the nanotubes is limited by the resonance 
requirement of the absorber. This apparent limitation, 
however, is overcome by locating the mirror on a ped-
estal underneath the pixel instead of its conventional 
location on the substrate. This allows the nanotubes 
to be lengthened, limited only by the process for their 
deposition.

Videos in a U.S. presentation clearly demonstrated the 
theoretical benefits attainable by continued reduction 
of pixel size well below the diffractive blur size, even 
in uncooled detectors. The paper showed that, in the 
absence of noise considerations and geometrical ab-
errations, improvement persists until the Nyquist fre-
quency and the diffraction cut-off frequency coincide.
Uncooled IR technology innovation continues, and 
improvements are sure to continue the expansion of 
the use of microbolometers into applications formerly 
reserved for cooled FPAs having much higher perfor-
mance. Multi-spectral FPAs, with the associated loss 
of performance on a per-pixel basis, will likely drive 
raw performance improvements of uncooled.

Smart Processing

This session primarily covers advances in detector 
readout technology such as digital pixels as well as 
including functionality beyond simple signal/image 
acquisition in the focal plane circuitry.

An RF network comprised of photoconductive detec-
tor elements was described that can locate an area be-
ing illuminated. The detector elements, when illumi-
nated connect an upper layer of RF transmission lines 
to a lower layer of RF transmission lines.

A digital ROIC implementing Time-Delay and Inte-
gration (TDI) for 30 μm pixel pitch and 30 mW power 
consumption previously was reported to be improved 

to 15 μm pixel pitch and 20 mW power consumption. 
Simulation results were carried out for a 90 × 8 format.

A digital pixel using Pulse-Frequency Modulation 
(PFM) was described that implemented the residue 
measurement off-pixel using a column ADC in order 
to employ this technology in smaller pixels. Fig. 34 
shows the modified digital pixel schematic. This de-
velopment is projected to extend this type of ROIC to 
15 µm MWIR pixels.

CMOS ROIC design parameter extraction for cryo-
genic operation was described. The method used is 
based on the measurement of inversion charges form-
ing the transistor channel and, therefore, is insensi-
tive to low temperature effects related to transport 
phenomena, like freeze-out effects. Fig. 35 shows the 
model with extracted parameters compared to NMOS 
data.

Fig. 35 Measured and simulated ID × 
VD for NMOS transistors with W = L = 
25 μm at 77 K with parameters extracted 
at 77 K.

Fig. 34 Schematic including modifications to the PFM pixel 
include the addition of a source follower and the use of a power 
efficient self-biased differential amplifier instead of the compara-
tor. The proposed modifications are highlighted in red.
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Testing of an ASIC that is designed to connect to one 
or more readout integrated circuits (ROIC) in image 
sensors based on HgCdTe was reviewed. The ASIC 
provides all the necessary readout functions to operate 
an ROIC for a large scale focal plane array, such as: 
a programmable sequencer, analogue-to-digital con-
verters, power supply regulators, programmable gain 
amplifiers, programmable bias and reference voltages 
and monitoring inputs.

1/f Noise Update

It was claimed that the omission of the Navier-Stokes 
equation from the description of semiconductor car-
rier transport has hidden the reason for the universal 
observation of 1/f noise in these materials. The Navi-
er-Stokes equations predict turbulent flow. Turbulent 
flow has been shown to have a 1/f spectrum for fluctu-
ations in mass transport which may provide a natural 
explanation for 1/f noise. Fig. 36 shows the spectrum 
of mass flow fluctuations modeled from a jet imping-
ing upon a reservoir. Fluctuations were evaluated at a 
distance of 20 jet diameters from where the jet enters 
the reservoir.

Applications

Presentations focusing on applications of the vari-
ous infrared technologies in systems and subsystems 
were presented in Sessions 2 and 3. As applications 
are the main drivers for technology R&D, references 
to system applications can be found throughout the 
Proceedings. 

A national laboratory reviewed three recently devel-
oped air- and space-borne sensor systems. One was 
an airborne hyperspectral emission spectrometer de-
veloped to support hyperspectral measurements from 
a low Earth orbiting satellite. The second system, a 
multispectral radiometer, is being developed for use 
on the International Space Station. Its main purpose is 
to monitor the temperature of Earth vegetation. Fig. 37 
shows results from monitoring water stress in the U.S.. 
The third system will investigate changes in tempera-
ture and composition of the Martian atmosphere. The 
measurements will be made while the sensor system 
orbits the planet.

A university institute for geophysics and planetology 
presented a prototype hyperspectral imager based on 
a Sagnac interferometer spectrometer—see Fig. 38—
to be installed on a microsatellite platform. Its low 
mass and power consumption combined with absence 
of moving components make it ideal for low-orbit 
space applications. It operates in the MWIR spectral 
region and will, in one version, employ an uncooled 
microbolometer. 
 

Fig. 36 Spectrum of mass flowrate fluctuations sampled from a 
turbulent flow.

Fig. 37 Map of the 2012 drought in the United States showing 
differences in water stress. Red areas indicate high water stress 
(drought conditions) and green areas indication low water stress 
(non-drought conditions).

1/f 

Mass-flow rate fluctuations 
at 20D sample plane

D = jet starting diameter

Sampling time = 3.5 sec
~500,000 samples

@ 1 Hz

1/f 

xxviii

Proc. of SPIE Vol. 9819  981901-28



35 mm fr2
objective lens

M rra
i!.:

SO m m 07

collimating kn

75 mm Diam.
Pupil

50 rnm f2
imaging Zens

Uncool d Detector

Mirra

Beam spotter

StaM
aM

 M
em

+
al k.age

Vv

Primary sources of error
in geolocation. (2D model
not drawn to scale)

N

i

DMC
Accuracy

GPS induced

error: ±5m

GPS & LRF

combined
error: ±7m
Maximum in
axis to target

GPS

Accuracy \ # GPS, LRF & DMC combined

+5m Observer error: ±tan(2 °).range +GPS +LRF
Maximum in arc centred on observer

* Assumes good calibration and
absence of magnetic interference

= ±40m at 1km range
= ±75m at tkm range

A European company has developed an airborne IRST 
system designed to satisfy the demanding require-
ments of 5th generation fighter aircraft—see Fig.  39. 
Acquisition of targets at distances compatible with a 
beyond-visual-range missile launch was facilitated by 
improved hardware – optics, detector and processor. 
The most important technological improvement was 
in the development of processing algorithms which 
investigate target signatures, including variations in  
color and brightness, in order to filter out false alarms. 
Detector non-uniformities were, at times, found to be 
the limiting factor for detection of distant targets. 

One company highlighted challenges faced in devel-
opment of infrared technologies for missile applica-
tions. Attention was focused on very compact Joule-
Thomson-cooled detectors.

The second applications session described three sur-
face-based infrared imagers. Each imager benefitting 
from optimizing its design around a specific technol-
ogy.

One company presented a handheld or helmet-mount-
ed polarimetric imager for improved detection of man-
made targets in clutter and recognition of facial char-
acteristics—see Fig. 40. The microbolometer-based 
imager uses a polarization microgrid array integrated 
into the optical system and captures all polarization 
states simultaneously. Presented data showed immu-
nity to motion artifacts. 

The second ground-based application presentation 
highlighted the processing software of thermal bin-
oculars. The processor provides interfacing with laser 
rangefinder, digital compass and GPS. The geoloca-
tion data received from the “software-defined camera” 
helps minimize occurrences of friendly fire and civil-
ian casualties. The primary sources of error in geolo-
cation was discussed—see Fig. 41. 

Fig. 40 Examples of polarimetric images (right-
hand column).

Fig. 41 Primary sources of error in geolocation illustrated in a 
2D model.

Fig. 38 The Sagnac interferometer with collimating and im-
aging lenses.

Fig. 39 Embedded version of the IRST during flight trials.
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A Word from the Master

Roger DeWames was the speaker for this session. He 
reviewed an assortment of IR materials and devices 
covering the visible to VLWIR spectral region. Top-
ics included InGaAs SWIR characteristics and ways 
to improve these devices. InSb homojunction devices 
were covered next, followed by MWIR HDVIP de-
vices. Finally, double-layer MWIR and LWIR were 
considered and their limitations and potential for im-
provement were reviewed.

Keynote address

Dr. Karl-Heinz Rippert of the German Defence Agen-
cy gave the keynote address on the role of infrared 
technologies and systems in the German Federal De-
fense Forces. He reviewed plans to reduce pixel size 
to 5 µm and increase the FPA format to 2048 × 1536 
while keeping the dewar size fixed. This development 
is being supported in order to improve the identifica-
tion of asymmetric threats. Higher operating tempera-
ture with reduced power consumption was also fea-
tured in the plans. SWIR development for low-light 
and active detection will be an important part of fu-
ture technology. Finally, data processing from sensors, 
international networking, and joint data bases were 
noted as important components in defense force mod-
ernization.

Gabor F. Fulop

Bjørn F. AndresenPaul R. Norton

Charles M. Hanson
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detail with higher resulution as  
complete image
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Figure 1 Night glow radiance (reproduced from 1:I) In comparison with blockbodt background radiation

HOT  
GEN 1

F/3.5, 640x512, 15µm pitch, λCO= 4.75 µm @ 160K Standard two point NUC and pixel replacement; histogramingmode

 HOT GEN 1 (120K): good image quality up to ~160K
 HOT GEN 2 (140K): good image quality up to ~180K
 challenges:

− reduce dark current
− decrease number of defective pixels at elevated temperatures

BAAINBw

Reduction of Size, Weight and Power (SWaP) High Operating Temperature MCT MWIR Detectors

HOT IR - Modules
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SWIR Detectors for Low-Light Level Imaging
BAAINBw

night glow @ night, no moon, no clouds (green)

night glow  @Nacht no moon, clouds (zyan)

picture: no moon, no clouds, SWIR 1.8 cooled  
reflexion 5%, 20%, 50%, 90%, 95%  
distance  targets150m, forest 300m

0.9µm – 2.5µm night glow photos compared to  
thermischen photons. In atmospheric window  
2.0µm – 2.5µm thermal radiation is dominating.

With SWIR2.5 imager (cooled) NETD to 150mK at TBB ~ 20°C  
possible. Real system comes with 1.8µm cutoff warm filter.

Targets 5% 20% 50% 90% 95%
Night, no moon, no clouds  

CMT1.8µm
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SWIR Detectors for Low-Light Level Imaging
BAAINBw

Night Glow at moonless night without clouds (green)  

Night Glow  at moonless night and clouds (zyan)

Picture : moonless without clouds Night Glow SWIR 1.8 cooled  
scheme with 5%, 20%, 50%, 90%, 95% Reflexion  
sceme in 150m, forest in 300m distance

0.9µm – 2.5µm Night Glow photon vs thermal photons.
Atmospheric window: 2.0µm – 2.5µm with dominating
IR radiation. SWIR2.5 cooled IR image NETD ~150mK at
~ 20°C ambiance temperature.

Trend:  MESA to SWIR Planarstructures

InP cap

InGaAs absorber

InP n-contact 

InP substrate

5% 20% 50% 90% 95%
Night Glow, moonlessnight  

CMT 1.8µm

p p
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BAAINBw
SWIR Detectors for Low-Light Level Imaging

SWIR Detectors for low-light level imaging

SWIR by CMT detector at night, car lights  
improvement by local contrast enhancement

linear grey values lokales histogramming for grey values

SWIR camera CMT  
(0,9µm – 1,8µm)  
FoV 6,1° x 4,9°
640 x 512 pixels

tower 1500m  
Class 1 LRF
1,25 mrad x  0,1 mrad
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Laserquelle

Synchronisation

Verstärkte Kamera oKamera

geöffnet

Kamera

O geschlossen

Kamera

O geschlo

Gated Viewing:

Synchronisation einer gepulsten Laserquelle und eines ,gate"-baren Bildsensors.

?? j;'=A..``",a

BAAINBw
2D SWIR Detector for active imaging (Laser-Gated-Viewing)

Source: ISL

Pros vs passive imaging:
 high identification range to discriminate threat / no threat
 recognise shapes / contoures vs. background
 depression of foreground disturbances (e.g. camouflage nets, smoke, fire)

)

Laser

camera gate  
open

gate closedgate closed

Synchronise  pulsed laser and  gating sensor
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BAAINBw

• High sensitive detectors
=> APDs at Gain >1

• ROIC with gating capability,  
and precise time gating  
(trigger by laser und  
programmable gate)

source: ISL, 1.5µm laser gated viewing, recognition of person through smoke

source: ISL, 1.5µm laser gated viewing, harbour, 1km distance

VIS Channel SWIR Gated

Gated Viewing advantage:
• Imaging thorugh smoke without  

distraction
• Day / night application
• Improved target identication

( looking throug class windows)

Further technology R&D:

2D SWIR Detector for active imaging (Laser-Gated-
Viewing)
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Dual-Band MCT IR Modules
BAAINBw

 detector format:

 pixel-design

640x512 pixels  
20 µm pitch
lco = 3-5µm & 8-10µm  
MBE-MCT on CZT
back-to-back

1280x720 pixels  
12 µm pitch
 current development
 MBE-MCT on GaAs

⇒ spatial coincidence
⇒ sequential integration

IDCA with adaptive cold shield aperture
 F/2 for LWIR and F/4 for MWIR

⇒

Preliminery design: Final design:

19 April 2016 UNCLASSIFIED 16
 

Advantages of Dual-Band IR Detectors (3–5 µm und 8–10 µm):
⇒ always to choose best band independend from environment conditions
⇒ optimised for operations (detection: LWIR; identification: MWIR)
⇒ enhanced target classification by fusion of different (independend ) spectral information
⇒ optimise contrast

MWIR:3-5µm LWIR: 8-10µm

Enhance Reconnaissance Performance by Dual-Band Detectors

Dual-Band MCT IR Modules
BAAINBw
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Sensors

Ground - /Exploitation Stations

Shared ISR Data Shared ISR Data

Decision Makers Military Users

Processing
BAAINBw

Aim
• support evaluaters to interprete  

complexe data from different  
imaging sources

• improve identification results by  
combination of methods

Way
• concept to use multisource methods  

with different levels of automation
• enhance assistance systems
• establish catalog if test signatures
• analyse potential conflicts and  

learning procedures

Results to achieve
• Interactive assistence system to  

evaluate optical / IR and SAR images
• Automatic procedures to enhance  

data for training
• enhanced assistence for sensor  

management and training

FhG
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International Networking with Joint Databases
BAAINBw

CSD (Coalition Shared Data) Server based on STANAG1 4559  
(NSILI-NATO Standard ISR2 Library Interface)
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Sensor Systems

Radar
i

l
Proprietary Data
Formal

Converter

Standardized
Data Format

Sonar

I

1

Still Image
(EO) Camera

Motion Image
(IR) Camera

Motion Image
(EO) Camera

a

Network

Exploitation
System A

*irr

Exploitation
System B

CXP (Collection & Exploitation Plan)
- -+ STANAG 3377/3596 (Reporting)
- STANAG 4545 (Imagery)

STANAG 4607 (GMTI)

STANAG 4609 (Motion Imagery)
- STANAG 5516 (Tracks)

Tasking
Element

Situational
Awareness System

Network 2. 3.... f-`
/

BAAINBw

Exploitation of systems store relevant metadata and products in common formats  
Interoperable architecture enables data analysis, international coordination and networking

19 April 2016 UNCLASSIFIED 20
 

BAAINBw

Thanks
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