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ABSTRACT   

The Quantum Cascade Laser is becoming a key tool for plenty of applications, from the IR to the THz range. Progress in 
nearby areas, such as the development of ultra-low loss crystalline microresonators, optical frequency standards and 
optical fiber networks for time&frequency dissemination, are paving the way to unprecedented applications in many 
fields. For the most demanding applications, a thorough control of quantum cascade lasers (QCLs) emission must be 
achieved. In the last few years, QCLs unique spectral features have been unveiled, while multifrequency, comb-like 
QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging 
from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. In our group, we are 
combining crystalline microresonators, with a combined high quality factor in the infrared and ultra-broadband spectral 
coverage, with QCLs and other nonlinear highly coherent and frequency referenced sources. Frequency referencing to 
optical fiber-distributed optical primary standards offers astonishing stability values of 10-16 @1-sec timescales in 
laboratory environments but several hundred kilometres far away from the primary clocks. A review will be given of the 
present status of research in this field, with a view to perspectives and future applications. 
Keywords: Quantum Cascade Lasers, Frequency Metrology, Microresonators 

1. INTRODUCTION 
One of the most significant developments for semiconductor physics, in recent years, has been the development of a new 
class of emitters based on intersubband transitions. These devices have attracted considerable interest from the viewpoint 
of fundamental physics and, nowadays, have achieved a considerable impact in real world applications. In 1971, 
Kazarinov and Suris1 first proposed the use of intersubband transitions for radiation amplification in a superlattice 
structure. Since then, the birth and development of growth techniques, such as molecular beam epitaxy (MBE)2, with 
unprecedented control on layer thickness, has disclosed the way to the design of new materials by semiconductor 
bandgap engineering3. In this context, the possibility to use heterostructures to modulate the bandgap, creating sharp 
discontinuities in the conduction and valence bands, has allowed the investigation of a new class of phenomena and 
devices.  

In this framework, Quantum Cascade Lasers (QCLs)4,5 can be considered the primary achievement of electronic band 
structure engineering, showing how artificial materials can be created through quantum design to have tailor-made 
properties. QCLs are unipolar devices exploiting optical transitions between electronic states (conduction subbands) 
created by spatial confinement in semiconductor multi-quantum-wells. The QCL has a ground-breaking design based on 
the engineering of electronic wavefunctions on a nanometer scale. As far as the macroscopic properties of materials are 
defined by their electronic structure, the QCL is based on an artificial nano-material. The extreme precision of the 
material growth that is required to get the proper operation properties, combined with the large number of layers and the 
complexity of the structure, gives an impressive demonstration of the capabilities offered by bandgap engineering, and 
can be used to explore and implement novel quantum physical parameters. 

Heterostructure lasers operating in the visible and near-IR range have proven crucial to foster applications in plenty of 
fields, including information and communication technologies. On the other hand, the development of Quantum Cascade 
Lasers, semiconductor lasers able to cover the wide mid-infrared (mid-IR)/far-infrared (far-IR) regions of the 
electromagnetic spectrum, have allowed to fill the gap due to the limitations of other sources, like OPOs, CO2, 
Ti:sapphire, or lead salt lasers, thus significantly extending the range of use of compact semiconductor sources. Since 
their first demonstration, QCLs operating in the mid-IR have undergone an impressive development, achieving high 
performance levels. For example, in pulsed mode, the maximum operating temperature can be even higher than room 
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temperature in a wide range of wavelengths (5–12 μm). Significantly, room-temperature continuous-wave (CW) single-
mode operation around 9 μm has been demonstrated.6 Multi-watt output power, continuous wave, room temperature 
devices operating across the mid-IR, with wallplug efficiencies larger than 50%, have been recently reported7,8, with 
impressive performances in terms of spectral coverage (∼3–25 μm) and tunability range.9 QCLs with new promising 
material systems have been recently demonstrated to work up to 400 K at wavelengths within the first atmospheric 
window (3–5μm)10,11. In 2002, the spectral coverage of QC sources was extended to the far-IR,12 where efficient and 
miniaturized sources operating in the 1.2–4.9 THz window have now been successfully developed, in either single 
plasmon5 or double-metal waveguide configuration.12 

A peculiar feature of QCLs is the possibility to tune the emission frequency over a large bandwidth without changing the 
semiconductor material system, by changing the size of quantum wells to vary the energy separation of electronic states. 
This distinctive characteristic, together with the unipolar nature of the charge transport and the peculiar shape of the 
density of states, enables features totally different from those of bipolar lasers, that have an emission wavelength 
depending on the material bandgap and having a gain strongly temperature dependent. Moreover, in contrast with 
conventional interband semiconductor lasers, in a QCL the gain linewidth depends only indirectly on the temperature, 
and the optical gain is not limited by the joint density of states. This leads to the absence of gain saturation when electron 
and hole quasi-Fermi levels are well within conduction and valence bands. The gain is therefore only limited by the 
amount of current that can be driven in the structure to sustain the population in the upper state. In addition, the 
multistage cascaded geometry allows for electron recycling, so that each electron injected above threshold may generate 
a number of photons equal to the number of stages. The cascade geometry has the significant advantage that a uniform 
gain across the active region is limited by the ratio of the effective transit times between wells, including capture of the 
slower carrier and recombination times. The number of stages is mostly limited by the ratio between the effective width 
of the optical mode and the length of an individual stage. 

The tremendous progress these sources have undergone in the last decades has been possible thanks to a thorough 
characterization of these devices, e.g. unveiling their unique spectral features. Indeed, extremely narrow frequency 
linewidths, at tens of Hz or below, are necessary for demanding applications, ranging from cold molecules interaction13,14 
and ultra-high sensitivity spectroscopy15 to infrared/THz metrology.16,17 Towards these goals, complete characterization 
and control of the emission of QCL is necessary. In fact, though QCLs have shown extremely high spectral purity both 
in the mid-IR and in the THz domain, a crucial step towards an extensive use of QCLs for demanding spectroscopic and 
metrological applications is the development of techniques enabling not only the narrowing of the QCL emission down 
to the kilohertz level but also its referencing to a stable frequency standard. These opportunities will be discussed in 
details not only for already available mid-IR devices and THz QCLs, but also for new generation sources that are arising 
as the new frontiers of unipolar devices, including mid-IR QCL combs and room-temperature THz QCLs. 

2. MID-IR QCLS 
2.1 Single-frequency Mid-IR QCLs stabilization and spectroscopy 

To perform high-sensitivity and high-resolution sub-Doppler spectroscopy in the mid infrared, it is necessary the 
availability of intense and narrow (low-frequency-noise) laser sources. Moreover, if also a high accuracy is required, i.e. 
control on systematic uncertainties, an absolute reference for frequencies is needed. QCLs are ideal candidates for this 
role, since their intrinsic linewidth is comparable to the natural linewidth of molecular transitions (tens–hundreds of Hz), 
and the emitted radiation intensity spans from the milliwatt up to the watt level. Moreover, their tunability is another 
desirable feature. Unfortunately, on a time scale spanning from 1 s to 10 ms, QCLs linewidth is way wider in free-
running operation (about 1 MHz) due to the 1/f noise contribution. Two main approaches can be used in order to 
overcome this limitation and to provide the desired absolute frequency reference: (1) The QCL emission can be 
stabilized and narrowed against a molecular absorption line, (2) or it can be referenced to an optical frequency comb 
(OFC) through a phase-locking chain. Such schemes are here described.  

2.1.1 Polarization locking 

With the following experiment, a method to obtain a narrow-emission and absolutely-referenced QCL has been proven.18 
It exploits the availability of a natural ruler of frequency references given by the many strong molecular absorption lines, 
whose center frequency can be absolutely measured with a sub-kHz precision.19 Basing on this, it is possible to have a 
simple system for high-sensitivity/precision spectroscopy for a specific molecular species, without using an OFC. A 
polarization-spectroscopy (PS) scheme produces, without any external modulation, the narrow dispersive sub-Doppler 
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signal used to close the feedback loop on the QCL driving current for frequency stabilization. It will be shown that the 
linewidth of a continuous-wave room temperature QCL can be narrowed below 1 kHz (FWHM) by locking the laser to a 
CO2 line. The laser is a room temperature DFB QCL emitting at 4.3 μm, provided by Hamamatsu Photonics. It is 
operated at a temperature of 283 K and a current of 710 mA, delivering an output power of about 10 mW. A schematic 
of the experiment is shown in fig. 1. The QCL is mounted on a specific compact thermoelectrically-cooled mounting. A 
low-noise home-made current driver is used. It ensures a current noise power spectral density always below 1nA/√Hz, 
while keeping a fast current modulation capability, thanks to a control circuitry placed in parallel to the QCL based on a 
field-effect transistor (FET). 

 

 

Figure 1. Polarization-locking setup. The probe beam gives the signal used for the frequency locking. The pump beam is 
also used for the beat-note detection and the frequency counting. PS: polarization spectroscopy, DFG: comb-referenced 
single-frequency difference-frequency generation, FET: field-effect transistor, FFT: fast Fourier transform. Reprinted with 
permission from [18], copyright 2012. 

The chosen molecular transition is the P(29)e of the (0111 − 0110) ro-vibrational band of CO2 at 2311.5152 cm −1 (see 
section 1.1.3). The inset of fig. 1 shows a typical scan of the PS signal at a pressure of 8.9 Pa, when the laser frequency is 
tuned across the molecular resonance. By carefully balancing the differential detection, a zero-offset signal is obtained. It 
ensures a linear conversion of the laser frequency fluctuations into amplitude variations in the region centered around the 
resonance frequency. For the QCL frequency stabilization, the PS signal is processed by a home-made PID controller, 
and fed back to the FET gate for current control. From a preliminary analysis of the free-running frequency noise power 
spectral density (FNPSD) of a similar QCL,20 it is expected that a locking bandwidth of about 100 kHz is required for 
reaching a kHz-level linewidth. In order to ensure this condition, both the differential amplifier and the PID have been 
designed to have bandwidths larger than 1 MHz. However, there are two more fundamental aspects that can limit the 
loop bandwidth. The first is the roll-off of the QCL tuning rate with the modulation frequency:21 the tuning rate is never 
flat, even at low frequencies, and shows a -3 dB cut-off at about 100 kHz. The second is the width of the linear region of 
the PS signal, that introduces a frequency roll-off starting from 300 kHz. Following the above considerations, the 
bandwidth of the frequency-locking loop is expected to be in the range of a few hundred kHz. 

In order to characterize the frequency locking, two different measurements are carried out in parallel. The first one is the 
spectral analysis of the in-loop PS signal, the second one is the analysis of the beat note between the QCL and a narrow 
OFC-referenced DFG source providing a stable (10-Hz linewidth within 100 μs) and absolute reference. Each 
measurement has been also performed with the QCL in free-running regime. 

In fig. 2-left the FNPSD measurement results are shown. Firstly, it is noteworthy to highlight the improvements in the 
free-running regime brought by the evolution of the current driver: using the new-generation low-noise driver, the 
FNPSD exhibits a clean 1/f trend, confirming that virtually no external noise is added. By closing the frequency-locked 
loop, the FNPSD is reduced in the spectral range below 250 kHz, which is then assumed to be the loop bandwidth, as 
expected. At about 450 kHz, the onset of a self-oscillation peak is evident. It can be well explained by the dephasing 
introduced by the approaching roll-offs mentioned above and it is, at present, the factor limiting the loop performances. 
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The laser is a room temperature distributed-feedback QCL emitting at 4.3 μm. It is operated at a temperature of 283 K 
and a current of 710 mA. The radiation which the QCL has been locked to is produced by non-linear DFG process in a 
periodically-poled LiNbO3 crystal26 by mixing an Yb-fiber-amplified Nd:YAG laser at 1064 nm and an external-cavity 
diode laser (ECDL) emitting at 854 nm. The peculiar locking scheme, employing a direct digital synthesis (DDS) 
technique,27,28,29 makes the ECDL be effectively phase-locked to the Nd:YAG laser, while the OFC just acts as a transfer 
oscillator adding negligible phase noise to the DFG radiation. As a consequence, the mid-infrared radiation is referenced 
to the Cs frequency standard through the OFC, but its linewidth is independent of the OFC one.  

A schematic of the experimental setup is shown in fig. 3. A small portion of the QCL beam, taken with a beam-splitter, 
is used for the phase-locking. It is overlapped to the DFG beam through a second beam splitter and sent to a 200-MHz-
bandwidth HgCdTe detector. A 100-MHz beat note is detected by using few μW of both QCL and DFG sources. The 
beat note is processed by a home-made phase-detection electronics, which compares it with a 100-MHz local oscillator 
(LO) and provides the error signal for closing the phase-locked loop (PLL). A home-made PID electronics processes the 
error signal and sends it to the gate of a field-effect transistor (FET) to fast control the QCL driving current.  

 

 

Figure 3. Schematic of the experimental setup. There are three main parts: the beat-note detection between QCL and DFG 
for the phase-locking, the high-finesse cavity for FNPSD analysis and the saturation spectroscopy signal detection for the 
absolute frequency measurement of the CO2 transitions. Reprinted with permission from [25], copyright 2013. 

In fig. 4-left the beat note acquired using a FFT spectrum analyzer is shown. The width of the carrier frequency is limited 
by the instrumental resolution bandwidth, as expected from a beat note between two phase-locked sources. The locking 
bandwidth is limited by the dependence of the QCL tuning rate on the modulation frequency. A 250-kHz locking 
bandwidth is achieved, as confirmed by the servo bumps in the beat note. The phase-locking performance in terms of 
residual RMS phase error is measured by using the fractional power η contained in the coherent part of the beat-note 
signal, i.e. in the carrier. By evaluating the ratio between the area under the central peak of the beat note and the area 
under the whole beat-note spectrum (1.5-MHz wide), a phase-locking efficiency of η = 73% is obtained, yielding a 
residual RMS phase noise of 0.56 rad. The main portion of the QCL radiation is used for frequency-noise 
characterization and for spectroscopy. To the first purpose the QCL beam is coupled to a high-finesse cavity, which 
works as frequency-to-amplitude converter, when its length is tuned in order to have a transmission corresponding to 
half the peak value. The cavity free spectral range is 150 MHz, and its finesse is about 9000 at λ = 4.3 μm, as measured 
with the cavity-ring-down technique, leading to a mode FWHM of 18.8 kHz. The cavity output beam is detected by a 
second HgCdTe detector, and the resulting signal is processed by a FFT spectrum analyzer.  
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from OE waves. The resonator had a diameter of 3.6 mm, corresponding to a free-spectral range (FSR) of 18.9 GHz at 
the experimental wavelength, and was mounted inside a custom-made housing in order to reduce both thermal and 
mechanical fluctuations, and in order to protect it from dust and humidity. The QCL was free-beam coupled to the 
resonator through a coupling prism, placed close to the resonator surface. By acting on the temperature, it was possible 
tune both the mode width and resonance frequency, to in order to select the best coupling condition. Optimal coupling 
required a beam waist of about 10 mm (radius at 1/e2 of the total beam power). In operating conditions, the measured 
WGMR transmission mode was 3.1 MHz FWHM, corresponding to a Q ≃ 2.2·107. The measured value for the Q-factor 
is in agreement with other measurements made on similar WGMRs at the same working wavelengths.31,32 

The improvement in terms of frequency stability and linewidth was studied by measuring the laser frequency noise 
power spectral density (FNPSD) by means of a frequency-to-amplitude converter (fig. 5). In our setup, the converter is 
the side of a strong CO2 absorption line, the (000-001) P(42) transition occurring at 2311.105 cm-1, with a linestrength of 
4.75·10-19 cm (HITRAN units). The CO2 pressure inside the cell was chosen in order to maximize the slope of the 
absorption line (P ≃ 1 mbar) for an optimal frequency-to-amplitude conversion. The measured laser FNPSD is shown in 
fig. 7. The locking bandwidth exceeds 100 kHz and the loop is able to pull down the laser FNPSD by more than 3 orders 
of magnitude with respect to the free-running laser (black trace). We inferred ≃ 700 kHz linewidth for the free-running 
laser (1 second timescale), which is reduced to 15 kHz in the locked regime (10 kHz for 1 ms timescale).32 This stability 
at long timescales marks the difference with respect to previous results on QCLs locked to mid-IR cavities,33 which 
suffer of a larger sensibility to external acoustical and mechanical noise. It is interesting to note that the achieved noise 
reduction is very similar for both the electronic and optical locking, allowing to choose among the two techniques 
according to the experimental necessities without degradation of the final result. 

A test of the suitability of the QCL-WGMR system for high-resolution spectroscopy was performed.34 In this test a 
standard pump-probe setup for sub-Doppler spectroscopy was realized. In locking conditions, the QCL was tuned on the 
same strong CO2 transition mentioned above. A Lamb dip with about 2 MHz FWHM was recorded, where the main 
width contribution due to residual Doppler broadening. An uncertainty of 9 kHz on the transition center frequency was 
obtained, corresponding to a relative precision of about 10-10 over a few seconds acquisition time. 

 

 
 

Figure 5. Frequency-noise power spectral density for free-running (black trace) and locked (orange trace) QCL. The 
frequency cut-off around 300 kHz is due to the limited bandwidth of the detector. Reprinted with permission from 
[31], copyright 2016. 

2.2 Mid-infrared frequency combs generation and control 

Considering the wide spectral features characterizing molecules in the mid infrared, it’s clear that it is very interesting 
and useful to have OFCs operating directly in this spectral region. Firstly they can serve as direct references for single-
frequency MIR lasers, such as DFB QCLs. Even further, they can be used directly for MIR spectroscopy. An OFC 
radiation can give more spectroscopy information at a time than a single-frequency one, thanks to its instantaneous 
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the phase noise and frequency control of the QCL-comb. A fraction of the HBNS signal is recorded by an RF spectrum 
analyzer. When the frequency spacing between the QCL-comb modes and the DFG-comb ones falls within the 
bandwidth of the detector, the obtained RF spectrum is made of several peaks, each of them resulting from the beating 
between a QCL-comb tooth and a DFG-comb tooth (in a ratio of one every seven). The spacing between these peaks is 
|fs − 7fr| (about 10 MHz). The HBNS is also used in an RF chain. The signal is filtered at 30 MHz just to select only one 
peak (with all the parameters chosen to have the better signal-to-noise ratio). Then it is sent to a home-made hybrid 
analog/digital phase-locked-loop (PLL) electronics. When the loop is closed on the QCL current modulator, this signal is 
locked to the 30 MHz local oscillator, essentially locking one QCL-comb tooth to a DFG-comb one.  

When the QCL-comb operates in free-running regime, the peaks in the HBNS are about 1-MHz wide. As a first step the 
performance of the loop has been tested. Once closed the loop and optimized the PLL parameters, the HBNS has been 
acquired with the spectrum analyzer in real-time mode. Each acquisition is made of 20 frames. Each frame contains the 
HBNS in time domain over a 2-ms time interval sampled at 75 MHz. Afterwards, for each frame the Fourier transform 
of the signal (amplitude and phase) has been computed.  

 

 
 

Figure 7. FFT amplitude of the 20 frames of an acquisition of the HBNS. Each color is related to a specific frame. The QCL-
comb operates in locking condition. Each frame contains the HBNS in time domain over a 2-ms time interval sampled at 75 
MHz. Reprinted with permission from [40], copyright 2016. 

All the 20 obtained amplitude spectra of an acquisition are reported in fig. 7. In fig. 8 a zoom of the locked peak (the one 
filtered to be used in the locking chain) is shown. On a frequency span of 2 MHz the typical shape of locked signals is 
evident, with the bumps given by the electronic bandwidths. On a span of 12 kHz the peak is still resolution-bandwidth-
limited and a perfect stability over the whole acquisition is observed. In fig. 8 the phase of the signal around the locked 
peak is also reported. The phase is clearly stable over the whole acquisition.  

Now, for studying the collective effect of the locking, we concentrate our attention on the other peaks. In fig. 9 a zoom 
of the first-neighbor peak is shown. On a span of 2 MHz the peak shows a shape close to the one of the locked peak, but 
on a span of 12 kHz frequency fluctuations are evident.  

This experiment proves that the QCL-comb mode used in the locking chain is perfectly stabilized, while the other modes 
are only partially stabilized. The locked QCL-comb mode shows a perfectly stable phase difference compared to the 
DFG-comb one, while the other QCL-comb modes show a reduced linewidth from 500 kHz down to values ranging from 
1 to 23 kHz on a 40 ms time scale, depending on the distance from the locked mode. Another actuator to control the 
spacing fluctuations is required in order to lock all the modes. Apparently, the spacing fluctuations are not affected by 
the locking. 
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pollution monitoring and global warming.44 Other spectroscopic applications include plasma fusion diagnostics,45 or 
identification of different crystalline polymorphic states of a drug. 

The lack of coherent sources in this range was first filled by optically pumped fixed-frequency FIR lasers, at the basis of 
laser magnetic resonance (LMR) spectrometers, having a wider tunability, but only working on paramagnetic species 
(see e.g. ref. 46). Generation of microwave sidebands on the strongest FIR laser lines in Schottky diodes could produce 
tunable FIR radiation up to about 3 THz (100 cm−1).47,48 Continuous spectral coverage from 300 GHz up to about 9 THz 
was achieved by different configurations based on nonlinear mixing of microwaves with infrared radiation from carbon-
dioxide lasers in metal–insulator–metal (MIM) diodes.49–51 The unique combination of very wide tunability, few tens of 
kHz frequency uncertainty and kHz level linewidth produced plenty of accurate frequency measurements of atomic and 
molecular transitions (see e.g. ref. 52-54). A pioneering ‘hybrid’ approach, generating far-IR radiation by mixing, onto a 
MIM diode, a frequency-locked CO2 laser and a QCL emitting around 8 μm wavelength, allowed tunable spectroscopy 
of rotational lines of hydrogen bromide.55  

3.2 Single frequency THz QCLs 

The equipment discussed up to now, available for THz generation, is generally bulky, expensive and often suffers from 
low output powers (<μW). Consequently, availability of a new generation of compact, reliable THz sources is the key for 
the development of the largely underdeveloped THz range. As discussed in the following, THz emitting QCLs are 
proving to be good candidates to fill this gap. The first report on a THz QCL56 exploited a careful design of the active 
region based on a chirped superlattice and an asymmetric low-loss waveguide and emission at 4.4 THz was achieved. In 
this first experiment, the miniband width was kept lower than the optical phonon energy, in order to avoid photon re-
absorption. Since then, despite the cryogenic operation temperatures (199 K),57 THz QCLs have attracted considerable 
attention thanks to the high output power (>100 mW), spectral purity, stability, compactness and reliability, and have 
now a realistic chance of making a deep impact on technological applications. In fact frequency- and phase-stabilized, 
high-power and reliable solid-state terahertz sources can indeed find application in a large number of fields, from far-
infrared astronomy58 and high-precision molecular gas spectroscopy59 to high-resolution coherent imaging and 
telecommunications.60,61 

In addressing such application requirements, high frequency stability sources are almost mandatory. In this context, 
knowledge about the intrinsic linewidth due to quantum noise is key, as it ultimately determines the achievable spectral 
resolution and coherence length. Environmental effects such as temperature, bias-current fluctuations and mechanical 
oscillations are widely known to have a significant effect on emission linewidths in QCLs. This means that any 
experimental linewidth measurement is dominated by extrinsic noise.62-66 Up to 2012 only a few experimental studies 
had indeed been reported on the spectral purity of terahertz QCLs, and these give upper limits of 30 kHz, 20 kHz and 6.3 
kHz for the instantaneous linewidth.62,65,66 Environmental effects can be minimized by using frequency-stabilization or 
phase-locking techniques, resulting in narrower linewidths that are limited by the loop bandwidth of the specific 
experimental system.63 

3.3 Intrinsic linewidth 

Recently, the spectral purity of a THz QCL has been investigated via the measurement of its frequency-noise power 
spectral density (FNPSD), providing an experimental evaluation and a theoretical assessment of its intrinsic LW.67 
Intensity measurements were performed to retrieve information in the frequency domain by converting the laser 
frequency fluctuations into detectable intensity (amplitude) variations. As a discriminator, the side of a Doppler-
broadened methanol molecular transition has been used. Specifically, the ro-vibrational molecular transition line of 
CH3OH, centered at 2.5227816 THz, was used as a discriminator. Given the intrinsic low-noise nature of the 
measurement, the converter (or discriminator) must introduce negligible noise providing, at the same time, a gain factor 
suitable for good detection. A schematic diagram of the experimental set-up used is shown in figure 10. 

The collimated THz QCL beam is sent to the gas cell for spectroscopy experiments. It is then split by a wire grid 
polarizer: the reflected beam is chopped and sent to a pyroelectric detector for the acquisition of the line profile and for 
frequency stabilization; the transmitted beam is acquired by means of two detectors (a silicon bolometer and a hot-
electron bolometer (HEB), depending on the required bandwidth) and used for the frequency-noise measurement. It is 
worth noting that the gas cell window has been properly tilted with the specific purpose to avoid any optical feedback 
effect on the measured frequency noise.  
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