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ABSTRACT

Morphological and rank -order filtering can be performed by combining linear
operations and thresholding. In this review we present several approaches for the
optoelectronic implementation of these operations. The systems based on this
architectures are able to deal with realistic size images at high frame rates. Additionally,
the same concepts are applied to nonlinear correlators based on thresholding and linear
correlation. The main features, owing to the nonlinearity of the process, are the higher
discrimination and the selectivity to target intensity, with independence of the global
image intensity.

Keywords: Nonlinear image processing, Nonlinear correlation, Morphological
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1. INTRODUCTION

Important development has been made on the field of signal and image processing
in the last years. Owing to the enormous achievements of the electronic computers, the
digital techniques play each time a more important role. Although the limit of capabilities
of computers has been shifted far beyond expectations, electronics presents physical
limits resulting from interactions between electrons and from the necessity of having
permanent conducting lines. Optics offers alternative solutions for interconnections.
Moreover, the possibility of realization of operations with the speed of light and the
inherent parallelism of optical processors are additional advantages of Optics.
Convolution is a well known example of the type of operations which can be ideally
performed in simple optical systems. This is the reason for our interest in hybrid
optoelectronic systems which are expected to deliver solutions to both general and highly
specialized problems in image processing.

In the two last decades, nonlinear image processing has become one of the most
fruitful subfields of image processing'-'2. Nonlinear filters are inherently locally
adaptative, because they are based on the local characteristics of the processed image. As
a consequence, these nonlinear filters have very useful properties as, for instance, they
simultaneously remove noise and preserve edges in contrast to linear filters. The
important issue in nonlinear processing is the search for effective nonlinear processors.
The processing can be performed in different ways: digitally, optically, and in hybrid
optoelectronic systems. Digital implementation of, for example, stack filters' is
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connected with technological difficulties and, as a result, the speed of digital operations is
limited. Optical implementation of, for instance, median filtering can be realized at a
megahertz frame rate but with limited flexibility13. By their nature, nonlinear operations
do not match traditional linear and shift invariant optical systems. Hybrid optoelectronic
systems are actually promissing because of both their high processing rate and their
possible universal and flexible character.

Two important methods of nonlinear image processing are rank -orders' 7' s, 11 and
morphological filtering3' 1a, 15. Although they are different from the point of view of
mathematical approach, they may lead to similar image modifications.

In morphological filters (MF), additivity and scalar multiplication of linear shift-
invariant filters is replaced by inclusiveness. The inclusion relation means that any MF is
an increasing transformation and thus filtering leads to a loss of information. In contrast,
linear systems preserve information within their transmission bands. As a consequence,
morphological filtering is irreversible, whereas linear filtering is, in principle, reversible.
MF present also the property of idempotence, i.e., unchangedness when multiplied by
itself. The same property characterizes nonlinear rank -order filters, which after several
passes over an image can result in finding the image roots ". Therefore, MF have
different properties from those of optical linear filters based on convolution.
Nevertheless, the basic morphological operations, i.e., dilation and erosion, can be
performed by means of convolution and threshold. Thus, the linear optical systems can
perform morphological filtering if they are complemented with electronics in order to
carry out the nonlinear thresholding operation. The possibility of optoelectronic
implementations of MF results from the study of Maragos and Schafer on relations
among morphological, order statistics and stack filters9' 16 They proved the equivalence
of rank -order and stack filters and those MF that conmute with thresholding. This
condition is met in the case of both binary and gray -scale images interacting with binary
structuring elements. In both methods, processing of a gray -scale image slice by slice is
based on the threshold decomposition concepts, which led to the definition of the
stacking property' of Boolean functions. Nonlinear image processing based on the
thresholded local convolution approach permits operations on image details of the size
smaller than or equal to that of the convolution kernel. The processing results in
modifications of local histograms calculated for neighbourhoods contained within the
kernel windows.

The purpose of local histogram modifications can be various, examples of which are
noise removal, image detail enhancement, skeletonization, and segmentation. In both
rank -order and morphological processing the mechanism of detail enhancement is quite
similar. The details are extracted as the difference (residue) between the original image
and its nonlinearly processed versions, which are low -pass filtered. In rank -order
processing the usual low -pass filter is the median one, which neglects extreme image
pixel values contained within the local convolution window. In morphological processing
the opening and closing transformations have selective low -pass filter properties. In
binary images, the opening filters out small sets and small convex details of objects. Thus
the gray -scale images are smoothed by the opening owing to removal of convex details
that on each grade of gray are thinner than the structuring element. The morphological
closing operation is dual to the opening. Therefore in binary images the closing fills in
small dark holes within objects and connects closely disjointed parts of objects into one.
The gray -scale images are smoothed by the closing owing to removal of concave details
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that are smaller than the kernel. In terms of intensity the opening removes bright details
of an image, while the closing removes dark details. Low -pass filtering is easily
performed in an optical system because of its limited modulation transfer function. Thus
the efficiency of optical systems in low -pass filtering results in good performance of
hybrid high -pass filtering processors. In both methods the size and the shape of preserved
details depend on the neighborhoods within which the operations are realized.

There are several optoelectronic implementations of morphological and rank -order
nonlinear processors13' 1/-25. In all of them, because of optical convolution, the digital
computations are reduced to calculating the maximum, minimum, and other rank -order
values and depend less on the neighborhood shape and size. In the first demonstration of
the optoelectronic rank -order processor a binary spatial light modulator (SLM) was
employed to introduce simultaneously into an optical convolver all of the binary slices of
an input image13. A computer -generated hologram played a double role of an image beam
deflector for slices and a structuring element. In this experiment a gray -scale image of 48
x 48 pixels with 16 gray -levels was processed in real time. In another hybrid
morphological processor the real -time programmable processing of limited -size images
was presented18. A binary input image and a structuring element were introduced into an
optical system by means of two SLM's. The use of a lenslet array illuminator yielded a
convolution due to angular projection. The convolution with angular projection was also
employed in the morphological processor with a laser beam scanner20. In the
morphological processor based on a coherent 4 -f type correlator the impulse response of
the Fourier -plane holographic filter played the role of a structuring element21' 22. In other
realizations of rank -order and morphological processors, noncoherent convolvers by use
of either a plane of misfocus or shadow casting were applied17' 23' 25 The slices of the
gray -scale input images were introduced into the convolvers by means of photographic
transparencies, a TV monitor, or a SLM. In all of the above -mentioned systems, looping
and sequential regime of work were necessary as a consequence of the sequential
structure of rank -order and morphological filters on the one hand, and the threshold
decomposition concept and stacking property on the other.

Recently, Tasto and Rhodes showed that both rank -order and morphological
filtering of threshold decomposed images realized in optoelectronic processors exhibits a
high degree of noise immunity and permits high- accuracy processing26. Their assessment
as well as the progress in real -time processing techniques encourages continuation of
research on hybrid optoelectronic systems for both rank -order and morphological
processing.

If image processing is a very important and wide field of research, not less
important is the field of pattern recognition, in order to determine the position of a signal
target among other objects in a scene. Location of a reference image in a scene may be
accomplished by the determination of the position where a function of similarity reaches
a maximum or, equivalently, where a given error criterion reaches a minimum. One such
error criterion is given by the mean -squared error (MSE) between two functions.

The vast majority of research on image detection has been based on minimizing the
MSE, which leads to maximizing the cross -correlation function27. The MSE criterion has
been shown to be optimal if the signal to be detected is corrupted with additive Gaussian
noise28, but for deviations from this Gaussian assumption other error criteria are more
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robust. One such criterion, widely used in signal processing and template matching, is the
mean -absolute error (MAE) (see Ref. [29], for instance).

In detection tasks the MAE criterion has two key advantages over the MSE
criterion30: (a) the MAE increases faster than the MSE when the reference is changed
from its optimal matching position, and (b) the MAE criterion is more robust in the
presence of non -Gaussian noise distributions and, in particular, in the presence of outliers
(such a salt and pepper noise).

Maragos, in Ref. [30], defined a nonlinear correlation named the morphological
correlation (MC), that is optimal when using the MAE criterion, i.e., minimizing the
MAE is equivalent to maximizing the MC. This correlation is called morphological since
it is defined in terms of erosion like minimum correlation- pattern values, so it has some
connection with mathematical morphology theory. The term "morphological correlation"
is used because the morphological autocorrelation of a function f(x,y) is equal to the area
under the signal obtained by erosion of the function f(x,y) by a two -point structuring
element { (0, 0),(x,y)}. This correlation provides better performance and higher
discrimination capabilities in pattern recognition tasks in comparison with linear
correlation3' 16 30 313

Analogously to morphological and rank -order operations, MC implementation can
be performed by use of the threshold- decomposition concepts. So, the MC between two
gray -level functions can be expressed by the use of the threshold decomposition of both
functions. It turns to be the sum over all amplitudes of the linear correlations between the
thresholded versions (binary slices) of both functions at every gray -level value. Note that
this correlation does not fulfill gray -scale mathematical -morphology properties.
Nevertheless, following Maragos30, we use the name of morphological correlation
because its closeness to morphological erosion.

Up to now, what there is in common between nonlinear morphological image
processing and pattern recognition by the use of MC is the threshold decomposition of
the gray -level images to be processed, which are decomposed into binary slices. In this
paper, we want to take profit of this decomposition in order to introduce optoelectronic
processors allowing different operations both in nonlinear image processing and in
nonlinear pattern recognition. It is divided in two main blocks, the first devoted to
nonlinear image processing using optoelectronic image processors, the second one
devoted to different approaches to morphological correlation and the corresponding
optoelectronic systems to implement them.

2. NONLINEAR IMAGE PROCESSING

Rank -order and morphological methods of image improvement can be divided into
two broad groups of algorithms, which aim at either image smoothing or enhancement of
image details$' 10, 11, 14, 15, as Image- smoothing algorithms are used for removal of noise
that has one of several possible properties or that is a mixture of different types of noise.
At the same time, information about fine image details is preserved. The noise -
suppression algorithms are used for preprocessing of images that afterward are subjects
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of enhancement operations such as, for instance, histogram modifications or edge
extraction. A sequence of proper operations may lead to a considerable image
improvement appreciated by a human observer. Application of smoothing and enhancing
algorithms may also precede pattern- recognition tasks.

2.1. Rank -Order Algorithms for Enhancement of Image Details

Let { V(k)) be a discrete input image with Q gray -scale levels of intensity
quantization: k = (k j, k2) is a vector coordinate of an input image element; k j =1, ...,N1

and k2 = 1, ... ,N2; N1 xN2 =N is the image matrix size. According to the threshold
decomposition concepts, the kth element V(k) of an input image is represented as a sum
of kth elements of all binary slices as

Q -1

V(k) = LXq(k), (1)
q =1

where Xq(k) is the kth element of a binary slice of an input image obtained through
decomposition with a threshold q; that is,

iifV(k) >_q
Xq(k) =

0 otherwise

For each slice { Xq(k) }, where braces denote the whole set of q -level elements, local
operations are performed within a spatial neighborhood S of arbitrary size and shape that
is similar for each kth input -image element. The spatial neighborhood S is cast by a
scanning binary (flat) structuring element that characterizes the local convolution. The
local -convolution operation can be very efficiently performed in a computer unless the
structuring elements become too large or non rectangular. Alternatively, local
convolutions can be accomplished in parallel in optical correlators. We believe that fully
programmable correlators for processing of large images by means of large and
arbitrarily shaped structuring elements should become feasible soon.

The possibility of parallel optical calculation of local convolutions was the basis of
an optical -digital method of local histogram calculation23. This method results from a
theorem proved in Ref. [23], which says that the local q -level histogram of an arbitrary
neighborhood in an input image is equal to the pointwise difference of the two
convolution patterns obtained by convolving the slices at the levels q + 1 and q with a
binary mask, thereby defining the neighborhood. We note that, for each pixel of the input
image, the pixel value in the convolution pattern of the q -level binary slice and the kernel
is equal to the number of pixels in the neighborhood that are on the q -level and higher
values.

Detail -enhancing algorithms are designed to increase local nonhomogeneities of
intensity distribution of an input image. An increase of local contrast can be
accomplished in a variety of ways. A simple and linear method is to enhance these pixels
that differ from average pixel values calculated within its spatial neighborhoods S:

Y(k) = mean {S[V(k)]} + G(V(k) - mean {S[V(k)] }), (2)
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where the output pixel value Y(k) is given by the sum of a bias term equal to the average
pixel value calculated within neighborhood S of the input pixel V(k) and another term
that is a difference between the input pixel value and the before -mentioned average
enhanced by a gain coefficient G. The above algorithm becomes nonlinear when the
mean operation is replaced with the med operation; that is, the median value of the
neighborhood S is considered as a reference.

The most general nonlinear rank -order unsharp masking algorithm (UM) is defined
as follows32:

UM[V(k)] = A + G(V(k) - med{ S[V(k)] }), (3)

where S[V(k)] is an arbitrary neighborhood of the kth element of an input image, A is the
offset, G is the gain coefficient of input -image details that differ from the median value,
and minus denotes a pointwise subtraction. Taking advantage of the threshold
decomposition concept, we process in sequence binary slices { Xq(k) } of the input image
rather than the gray -scale input image {V(k)} itself. For each kth input slice element a
local convolution is made and the median value med{ S[Xq(k)] } is calculated within the
kth- element neighborhood, S, defined by the binary convolution kernel. The pointwise
sum of all processed slices gives the output gray -scale image. Coefficients A and G are
image dependent and are calculated as follows. Pointwise subtracting the median from
the original, we find minimum ( -n) and maximum (m) difference pixel values as well as
the zero level (as a fraction f of the full range [ -n, m]). Then the gain coefficient is
calculated as G = 255/(m + n) and the offset A = 255f.

2.2. Morphological Algorithms for Enhancement of Image Details

Morphological filters are composed of two basic operations: erosion and dilation.
The erosion is defined as the locus of the center of the structuring element S when S is
included in the binary slice X, such that in the extreme case it follows the border
tangentially from inside. The dilation is defined as the locus of the center of the
structuring element when S intersects X, such that in the extreme case it follows the
border tangentially from outside. The simplest morphological filters are the opening and
closing. The morphological opening for binary slices is defined as follows:

1's{Xq(k)} = Sses{Xg(k)}, (4)

where the erosion es of the image slice { Xq(k) } by the structuring element S is followed
by the dilation Ss of the looped eroded slice by the same kernel. The opening filters out
bright details of an input image and is frequently used to remove salt elements of the two -

sided impulsive noise. The opening of a gray -scale image 'ys{ V(k) } is obtained by
stacking of the processed binary slices.

The dual operation of opening is closing, defined as:

cPs{Xq(k)} = esSs{Xq(k)}, (5)

124 / Critical Reviews Vol. CR74

where the output pixel value Y(k) is given by the sum of a bias term equal to the average 
pixel value calculated within neighborhood S of the input pixel V(k) and another term 
that is a difference between the input pixel value and the before-mentioned average 
enhanced by a gain coefficient G. The above algorithm becomes nonlinear when the 
mean operation is replaced with the med operation; that is, the median value of the 
neighborhood S is considered as a reference.

The most general nonlinear rank-order unsharp masking algorithm (UM) is defined 
as follows32:

where S[V(k)] is an arbitrary neighborhood of the kth element of an input image, A is the 
offset, G is the gain coefficient of input-image details that differ from the median value, 
and minus denotes a pointwise subtraction. Taking advantage of the threshold 
decomposition concept, we process in sequence binary slices (Xq(k)} of the input image 
rather than the gray-scale input image (V(k)} itself. For each kth input slice element a 
local convolution is made and the median value med{S[Xq(k)]} is calculated within the 
kth-element neighborhood, S, defined by the binary convolution kernel. The pointwise 
sum of all processed slices gives the output gray-scale image. Coefficients A and G are 
image dependent and are calculated as follows. Pointwise subtracting the median from 
the original, we find minimum (-n) and maximum (m) difference pixel values as well as 
the zero level (as a fraction f of the full range [-n, m]). Then the gain coefficient is 
calculated as G = 255/(m + n) and the offset A = 255f.

2.2. Morphological Algorithms for Enhancement of Image Details

Morphological filters are composed of two basic operations: erosion and dilation. 
The erosion is defined as the locus of the center of the structuring element S when S is 
included in the binary slice X, such that in the extreme case it follows the border 
tangentially from inside. The dilation is defined as the locus of the center of the 
structuring element when S intersects X, such that in the extreme case it follows the 
border tangentially from outside. The simplest morphological filters are the opening and 
closing. The morphological opening for binary slices is defined as follows:

where the erosion es of the image slice {Xq(k)} by the structuring element S is followed 
by the dilation 8s of the looped eroded slice by the same kernel. The opening filters out 
bright details of an input image and is frequently used to remove salt elements of the two
sided impulsive noise. The opening of a gray-scale image ys{V(k)}is obtained by 
stacking of the processed binary slices.

The dual operation of opening is closing, defined as:

UM[V(k)] = A + G(V(k) - med{S[V(k)]}), (3)

Ys(Xq(k)} = 8ses{Xq(k)}, (4)

(ps{Xq(k)}=es5s{Xq(k)}, (5)
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where dilation and erosion are applied in reverse order to that of opening. The closing
filters out dark details of an input image and is frequently used to remove pepper
elements of the two -sided impulsive noise. Here also the closing of a gray -scale image
cps {V(k)} results from summing up the processed binary slices.

A simple example of processing is the morphological gradient of a gray -scale
image, defined as:

gs{V(k)} = Ss{V(k)}-£s{V(k)}, (6)

where the minus sign represents a pointwise substraction of dilated and eroded images
that we obtained by stacking the binary processed slices.

Other well known operations are the morphological white -top -hat algorithm
(WTH), which enhances bright details, and the black -top -hat algorithm (BTH), which
enhances dark features. WTH is defined as:

WTH{V(k)} = {V(k)}-ys{V(k)}, (7)

that is, as the difference (residue) between the input image and its opening. Analogously,
BTH is given by the pointwise substraction of an original image from its closing:

BTH {V(k)} = cps {V(k) }- {V(k) }. (8)

For the purpose of comparison of results of rank -order and morphological methods
for image detail enhancement we propose to combine white and black top hats. The aim
is to unite bright and dark details obtained with top hats, as in the case of unsharp
masking. The difference D{ V(k) } between white and black top hats, which retrieves the
original contrast of details, is defined as follows:

D{V(k)} = A +G[WTH{V(k)} -BTH{V(k)}], (9)

where A is a normalization constant and G is the gain coefficient of extracted details,
both of which are calculated similarly as in the case of Eq. (3). Analogy between the
unsharp masking and the difference of top -hats algorithms is straightforward. In the first
one, bright and dark details that outlie from the local median values are properly
increased by a factor of G and displayed on a bias level A calculated for the whole image.
In the second one, bright and dark details are obtained from calculated differences
between the input image and its morphological opening and closing, then are multiplied
by the gain coefficient G, which depends on the dynamic range of the difference of top
hats, and the details are displayed on a bias level A calculated for the whole image. Both
algorithms are very good contrast detectors suitable for enhancement of bright and dark
details that are smaller than or equal in size and shape to the structuring element used to
modify the input image.
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2.3. Experimental systems

In our experiments, mainly two different optoelectronic morphological image
processors have been usedzs, ss, sa Fig. 1 shows a block diagram describing the operation
of both processors. An input gray -scale image is threshold decomposed into a stack of
binary slices. Each slice is optically convolved with a binary structuring element,
resulting in a stack of gray -scale convolution patterns. Then each convolution pattern is
thresholded on the maximum (erosion) or the minimum (dilation) level. The resultant
binary slices are added pointwise to form the output gray -scale image.

POINTWISE

OPERATION

STACK
OF

GRAYSCALE
CONVOLUTIO

PATTERNS

Figure 1: Block diagram of the morphological optoelectronic processor.

Fig. 2 shows the geometry of the first optical convolver employed in our
experiments. Convolution is obtained by use of a plane of misfocus. The camera lens
images a slice displayed on a spatial light modulator (SLM) onto the CCD camera. The
system point -spread function becomes wider, and it can be shaped by the diaphragm. The
SLM used was an Epson liquid -crystal with a resolution of 320x264 pixels. The
resolution of the light sensitive CCD matrix in the camera is 765x581. The input and
output images are stored in 256x256 matrices. Thus, while being processed the image
was resampled three times. In a previous implementation24 a TV monitor was employed
to display the binary slices.
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Fig. 2 shows the geometry of the first optical convolver employed in our 
experiments. Convolution is obtained by use of a plane of misfocus. The camera lens 
images a slice displayed on a spatial light modulator (SLM) onto the CCD camera. The 
system point-spread function becomes wider, and it can be shaped by the diaphragm. The 
SLM used was an Epson liquid-crystal with a resolution of 320x264 pixels. The 
resolution of the light sensitive CCD matrix in the camera is 765x581. The input and 
output images are stored in 256x256 matrices. Thus, while being processed the image 
was resampled three times. In a previous implementation24 a TV monitor was employed 
to display the binary slices.
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Figure 2: Optoelectronic setup of the morphological processor with feedback. The convolver,
which uses a plane of misfocus, convolves binary slices of an input image displayed on a liquid -

crystal SLM with binary structuring elements of controlled size and shape. The PC is used as image
slicer, frame grabber, thresholder, pointwise operator and postprocessor.

To obtain the possibility of programming the point- spread function of the optical
convolver it was necessary to change its design from the misfocus type convolver used in
previous experiments' 25, 33 to the shadow casting convolver design34-4o because of the
diffraction on the fine structure of the LCDs. In the misfocus type convolver a
monochromatic point in the source produces in the true image plane of the source the
Fourier transform of the kernel displayed on the pixelated LCD. Thus for a spatially
incoherent illumination one gets the convolution of the input (the source) with the Fourier
transform of the kernel. Broad band light would introduce additional chromatic
dispersion. Thus in the plane of misfocus, which is close to the image plane of the input
LCD, the effects of diffraction cannot be neglected. Influence of the periodical structure
of the LCDs on the convolution result can be avoided by the use of conventional shadow
casting architecture.

In the shadow casting convolver convolution is obtained by geometrical projection
of the images. The scheme of shadow casting setup is shown in Fig. 3.
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Figure 3: Shadow- casting correlator scheme.
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The convolved images are resealed due to projection. The scale factor for the first object
(LCD!) is equal to:

_0
SLCD1

and for the second (LCD2):

(10)

f +A
SLCD2 = f (11)

An imaging system must be added to match the size of the convolution pattern to
the size of the detector matrix. This introduces additional scale factor, equal for both
objects.

Two considerations must be made:
First, that from the purely geometrical point of view, convolution is created in every

plane along the axis of the setup. On the source side of the LCD2 it is, however, virtual
convolution which can be seen by forming a real image of it. The use of a virtual
convolution plane gives additional flexibility in choosing the values for scaling factors
(value of A is negative in this case). Generalized shadow -casting convolver is based on
this observation39

Second, that the amount of light emitted from diffusely illuminated point in the
LCD1 plane is used only within the cone created by rays coming from that point to the
edges of the LCD2. The smaller the distance f between LCDI and LCD2, the bigger
amount of light from the source is used. At the same time, the smaller the distance f the
more divergent are the rays after LCD2. Therefore if the convolution is to be imaged
without vignetting, the minimal entrance aperture of the imaging system increases as the
distance between LCD! and LCD2 decreases and the light efficiency decreases as the
distance between LCD1 and LCD2 increases.

The final architecture of the optical setup is presented in Fig. 4. LCD! and LCD2 are
used as programmable spatial light modulators to form the input and the point spread
function of the convolver. Lens Lf serves as a condenser correcting the light loss from the
outer parts of the LCD1. Lenses L1 and L2 form a system which images demagnified
convolution plane onto the light sensitive element of the CCD camera. The diagonal of
the LCDs used is 31 mm. The diagonal of the light sensitive CCD matrix is 11 mm. Thus
demagnification of about three times is required.
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Figure 4: Architecture of the optical convolver.

Therefore the distance between imaging lens and LCD2 is about four times bigger
than the focal length. Taking into account that the distance between LCD1 and LCD2
cannot be large, we conclude that to image the convolution with this demagnification
using one lens, an objective of F- number lower than one would be necessary. This is
according to the fact that in order to preserve space invariance in the setup vignetting
must be avoided. This difficulty can be overcome by the use of a system of objectives
instead of a single lens. In the plane just behind LCD2 the lens L1 creating the image of
LCD1 is placed. It makes the rays after LCD2 convergent. Both, LCD2 and the chosen
convolution plane are close to that lens, so their virtual images are slightly shifted
backward with small magnification. The lens L2 is the imaging lens which forms the final
demagnified image of the convolution plane.

LCD1 is illuminated with narrow band thermal light. With this illumination the
contrast ratio is increased with respect to that obtained with white light41, and in addition
the broad -band diffractional effects are reduced.

Under these conditions the resolution cells in both involved LCDs can be calculated
by means of the modulus of the complex coherence function. Using the Van Cittert -
Zernike theorem and assuming a pixel resolution in LCD2, the resolution cell in the
LCD1 can be calculated. For a distance between the LCDs of 180 mm, a mean
wavelength of 600 nm, and a pixel size of 80 gm, the size of the resolution cell in LCD1
equals 0.68 mm, which correspond to approximately 8 pixels. With the above mentioned
kernel size of 120 pixels, a 15 x 15 kernel may be achieved without any loss in resolution
of the system due to diffraction.

These calculations are made assuming continuous images in both LCDs. In fact
both images have a pixelated structure. As the resolution cell in LCD1 is much larger than
the pixel size, the effect of periodicity can be neglected. On the contrary, it must be taken
into account in LCD2. For a single pixel illumination from LCD 1 the structure of LCD2
acts as a diffraction grating. The angular separation of the diffracted beams can be
calculated from the period of the grating. In a first approximation the main effect in the
projection will be to produce a set of replicas of the object in the panel with a separation
depending on the period of LCD2 and the distance between LCD2 and the convolution
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These calculations are made assuming continuous images in both LCDs. In fact 
both images have a pixelated structure. As the resolution cell in LCD1 is much larger than 
the pixel size, the effect of periodicity can be neglected. On the contrary, it must be taken 
into account in LCD2. For a single pixel illumination from LCD 1 the structure of LCD2 
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plane. For 80 µm period the distance which produces a shift of the first orders by 1 pixel
is about 21 mm. In our experimental setup the chosen distance of 12 mm produces a
separation of about 1/2 pixel. Consequently, the effect of the pixelated structure of both
LCDs is, in practice, secondary.

2.4. Experimental results

The performance of the processors is demonstrated on the input image of 256x256
pixels and 16 gray -levels shown in Fig. 5(a). It should be noticed the rich structure of the
image.

Fig. 5(b) presents the result of a digital median filter with a binary kernel of 5x5
pixels. Fig. 5(c) shows the output of an optical median filter with a flat structuring
element of the same size. Visual examination of both results confirms good performance
of the optoelectronic processors.

For the purpose of quantitative comparison we use the mean absolute error (MAE)
as a measure of similarity. The MAE, which is frequently used in filter optimization
problems, is defined as follows:

MAE = Ñ IImedd{S[V(k)l- medop{S[V(k)J, (12)

where subscripts d and op indicate digitally and optically calculated medians. The
absolute value of the difference (i.e., error) between optical and digital results is summed
over the whole image matrix, normalized to the 256 gray- levels score, and divided by the
total number of pixels. Analogously, MAE can be defined for morphological operations
and filters used in our experiment.

The results of digital and optical median filtering have been used to calculate
unsharp masking. In Fig. 5(d) and 5(e) the results of digital and optical unsharp masking
are presented, respectively. Obviously, they preserve the similarity of digital and optical
results of median filtration.

Fig. 5(f) shows the result of morphological opening by use of the same 5x5 pixels
binary kernel with no corner pixels.

Fig. 5(g) shows the morphological gradient calculated in the optoelectronic
processor by use of a square 3x3 pixels kernel, while Fig. 5(h) corresponds to the
morphological gradient digitally calculated for the same input image and a kernel of the
same size and shape. The results are quite similar.

Fig. 5(i) and 5(j) show black and white top hats calculated optically according to
Eqs. (8) and (7), respectively. We note that both results of morphological processing are
satisfactory. The wide presence of a black background confirms the good quality of
optically calculated opening and closing.
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Figure 5: Experimental results of digital and optoelectronic calculations: (a) input image of
256x256 pixels with 16 gray -levels, (b) digital median filtration, (c) optical median filtration, (d)

digital unsharp masking, (e) optical unsharp masking, (f) optical morphological opening, (g) optical
morphological gradient, (h) digitally calculed morphological gradient, (i) optical morphological
black -top -hat, (j) optical morphological white -top -hat, and (k) normalized difference of optical

white and black top hats.
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Figure 5: Experimental results of digital and optoelectronic calculations: (a) input image of 
256x256 pixels with 16 gray-levels, (b) digital median filtration, (c) optical median filtration, (d) 

digital unsharp masking, (e) optical unsharp masking, (f) optical morphological opening, (g) optical 
morphological gradient, (h) digitally calculed morphological gradient, (i) optical morphological 
black-top-hat, (j) optical morphological white-top-hat, and (k) normalized difference of optical

white and black top hats.
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Fig. 5(k) presents the result of the difference between optical white and black top
hats calculated according to Eq. (9). The normalization constant A and the gain
coefficient G are calculated in exactly the same way as in the case of the unsharp
masking algorithm. We note that the experimental morphological result that combines
bright and dark details of the image is easier to examine visually than the results of a
rank -order unsharp masking algorithm calculated either digitally or optically. It is a
consequence of the opening, closing, and median filter definitions that the combination of
white and black top hats has a broader histogram than unsharp masking. Thus in the case
of the morphological difference of top hats the dynamic range of the output image is
more evenly employed than in the unsharp masking case.

In order to demonstrate the possibility of programming the kernel of convolution
(the shape of the neighborhood in which the filters are calculated) experiments using a set
of oriented kernels are performed. The kernel is a 7 pixel long line segment at 4 different
orientations. Fig. 6(a) shows the image used in these experiments. It exhibits marked
directional features, which would be removed by most conventional filters. This image
has been corrupted with 16 % salt and pepper noise, as shown in Fig. 6(b).

Figure 6: (a) Image used for directional median calculation in the opto- digital processor. (b) Same
as (a) with a 16% salt and pepper noise. (c) Result of max/median filtering. (d) Result of edge

extraction with the use of directional medians.

1999 Euro-American Workshop on Optoelectronic Information Processing / 133

Fig. 5(k) presents the result of the difference between optical white and black top 
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coefficient G are calculated in exactly the same way as in the case of the unsharp 
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of the morphological difference of top hats the dynamic range of the output image is 
more evenly employed than in the unsharp masking case.
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as (a) with a 16% salt and pepper noise, (c) Result of max/median filtering, (d) Result of edge 

extraction with the use of directional medians.
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The result of max/median filtering of the image from Fig. 6(b) is shown in Fig. 6(c).
To prove the good edge and line performance of this operation, edge extraction by taking
the difference of max/median and min/median is demonstrated in the presence of the
same noise. Results are shown in Fig. 6(d). The noise from the image is completely
removed whereas the line and edge information is maintained.

The ideal processing makes the threshold decomposition in all of the gray- levels of
the image. Nevertheless a reduction in the number of binary slices permits to reduce the
processing time and therefore to increase the speed of the opto- electronic processor. How
to select the threshold levels can be an important task. As an example, we present the
effects of the quantization on the thresholding levels in a test image with 256 gray- levels.
We studied the result of rank -order and morphological operations using Q =256, 128, 64,
32, 16, 8, 4 and 2 uniform threshold levels. As a measure of similarity between the ideal
filtered image (Q =256) and that filtered with another threshold levels, the mean absolute
error (MAE) was used. Fig. 7(a) shows the evolution of MAE as a function of the number
of threshold levels, when erosion operation is considered. The study was extended to
other operations as dilation, median, opening and closing.

Later on, the processing is repeated with a non uniform selection of threshold levels.
That selection is performed from the cumulative histogram of the image. Fig. 7(b) shows
the cumulative histogram of the original image and the ideal eroded image (Q =256). If
the selection of threshold levels is made taking into account that ideal eroded image, we
arrive to results that improve the MAE with respect to the same number of levels selected
with an uniform thresholding. Depending on the original image and of the operation to be
performed, the use of uniform or non uniform thresholding could be quite significative.

p 15

Uniform thresholding
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Figure 7: (a) Evolution of MAE as a function of the number of threshold levels. (b) Cumulative
histogram of the original image and the ideal eroded image (Q =256).

With regard to nonuniform threshold decomposition, the key task is how to
choose the threshold gray -levels. Intuitively, it is clear that a higher number of
quantization levels must be assigned to the regions of the histogram where its population
is higher (i.e., in principle, the choice of the quantization levels must be proportional to
the value of the histogram function). In image processing, the histogram equalization is a
standard technique with the same purposes. Performing this operation provides a
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With regard to nonuniform threshold decomposition, the key task is how to 
choose the threshold gray-levels. Intuitively, it is clear that a higher number of 
quantization levels must be assigned to the regions of the histogram where its population 
is higher (i.e., in principle, the choice of the quantization levels must be proportional to 
the value of the histogram function). In image processing, the histogram equalization is a 
standard technique with the same purposes. Performing this operation provides a
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histogram with the same population in every gray -level. The usual way is to take equal
intervals in the Y axis (number of points) of the cumulative histogram, which results in a
nonuniform quantization in the X axis (gray- levels). Thus, the slices are closer each other
in the regions corresponding to a sharper cumulative histogram.

One is tempted to use this principle to reduce the quantization error.
Nevertheless, the result would be sub -optimal. In the following, we will obtain the
optimal nonuniform quantization levels for a given histogram distribution.

The standard approach to minimize the loss of information in the image
quantization is to define a distorsion parameter D 42, which would take into account the
gray -level difference between each pixel of the original image and its quantized version.
Using a generic metric W to measure the elemental distortions, the parameter D can be
written as

D=
i =1

where Q is the number of quantization levels, q is a gray -level from the original image, q'
is the i -th quantization level, Ri is the quantization region corresponding to the i -th level,
p(q) is the histogram function, and d(q, q') is the error criterion taken as distortion
measuring in the quantization process. Therefore, if we want to minimize the MSE
between the original image and its quantized version, d(q, q') would be equal to (q- q')2;
on the other hand, if we want to minimize the MAE, d(q, q') would be equal to Iq- q'I.

Using the asymptotic results of Gish et al43 and Yamada et al» for general
metrics, the Eq. (13) can be simplified to the Bennett distortion integra145. In the event of
minimizing the MSE, this integral can be written as

1 W(q)P(q)
DMSE dq, (14)- 12Q2 X2(q)

where 2 (q) is the distribution of the quantization gray -levels; in the event of minimizing
the MAE, the integral is4ó

fd(q,q`)W(q)P(q)dq,R;
(13)

1
lW(q)P(q)DMAE = ! k(g) dg (15)

The optimal gray -level quantization .l (q) with the proposed metric W(q) can be
obtained, in any case, using the Hölder inequality in the standard way47. The results for
the MSE and the MAE criterions are

and
X.opt -MSE (q) 'VW (q) P(q ),

Xopt MAE (q) x .J W ((TP(g ).

(16)

(17)

We can see here why the intuitive idea of taking the quantization levels
proportional to the value of the histogram function in order to reduce the quantization
error is wrong. The optimal gray -level quantization A (q) which minimizes the MSE
criterion must be proportional to the cubic root of the histogram function. In the case of
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The optimal gray-level quantization A (q) with the proposed metric W(q) can be 
obtained, in any case, using the Holder inequality in the standard way47. The results for 
the MSE and the MAE criterions are

^ opt-MSE (q) °= yJW(q)p(q), 
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(16)

^opt-MAE (q)oc‘J^V(qjp(.q).
(17)
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error is wrong. The optimal gray-level quantization A (q) which minimizes the MSE 
criterion must be proportional to the cubic root of the histogram function. In the case of
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the MAE criterion, the optimal Â (q) which minimizes the MAE must be proportional to
the square root of the histogram function.

We have proved this theory digitally with the input image show in Fig. 8(a). Fig.
8(b), (c) and (d) show the result of quantizing this input image with 16 gray -levels
selected proportionaly to the histogram function, the square root of the histogram
function and the cubic root of the histogram function, respectively. Fig. 8(c) is the one
which minimizes the MAE with regard to Fig. 8(a), and Fig. 8(d) is the one which
minimizes the MSE with regard to Fig. 8(a).

(a)

(c)

Figure 8: (a) input image with 256 gray -levels, (b) quantized version taking the 16 quantization
gray -levels proportionally to the histogram function, (c) quantized version taking the 16

quantization gray -levels proportionally to the square root of the histogram function, (d) quantized
version taking the 16 quantization gray- levels proportionally to the cubic root of the histogram

function.

Table 1 shows the results for the MAE and the MSE when comparing the input
image with every quantized version.

Measured distortion between Fig. 8(a) and
Fig. 8(b)

Measured distortion between Fig. 8(a) and
Fig. 8(c)

Measured distortion between Fig. 8(a) and
Fig. 8(d)

MAE MSE
10204 75912

9539 51821

9637 50539

Table 1: Results for the MAE and the MSE when comparing the images shown in Fig. (8).

It can be seen the MAE minimization in the event of taking the quantization
levels proportionally to the square root of the histogram, and the MSE minimization in
the event of taking the quantization levels proportionally to the cubic root of the
histogram.
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3. MORPHOLOGICAL CORRELATION

As stated above, Maragos in Ref. [30] defined a nonlinear correlation named the
morphological correlation (MC) that is optimal when using the MAE criterion for the
localization of a reference object in an input image. As in linear correlation, the location
of the reference object in the observed image corresponds to the location of a maximum
value of the intensity in the morphological correlation plane.

Let us consider two real -valued two- dimensional signals represented by f( n) and
g(,r)), where (4,rl) E Z2. For the sake of clarity we consider that both f and g are defined
in the discrete domain, although the formal definitions can be done in the continuous
domain. Assume that f is a pattern to be detected in g. For finding which shifted version
of f best matches g, a standard approach has been to search for the shift lag (x, y) that
minimizes the MSE,

MSE(x,y) = E[g(( +x,rl +y)-f(0-1)]2, (18)
anew

over some subset W of Z2. According to Ref. [30] and under certain assumptions, this
matching criterion is equivalent to maximizing the linear cross correlation between g and
f:

Ygf(x,y)= Eg( +xTl +y)f(4,r
anew

Other error criteria are more robust when the signal to be detected is corrupted with noise
patterns that are different from additive Gaussian noise30. One such criterion is the MAE,
defined as

(19)

MAE(x,y) = + +y) -f(E,4 (20)
g,nEW

As in Ref. [30] and under certain assumptions, minimizing the MAE is equivalent to
maximizing the non -linear cross correlation:

(x, y) = Emin[g( +x,rl +y ), f(4,rl)1 (21)
,,SEW

which corresponds to the definition of the MC given by Maragos.

Analogously to morphological and rank -order operations, MC implementation can
be performed by use of the threshold- decomposition concepts. The threshold
decomposition of the quantized gray -level image f(x, y) is defined as

Q-1

f(x,y) = Efg(x,y),
q =1

where
1 iff(x,y) >_q

4(x, Y) =1
0 otherwise

Now, for any (xi, Y,) and (x2, Y2),

(22)
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1

min[g(x,y1),f(x2,y2)]= min[gq (xi ,y1),fq(x2) y2)1
q =1

because gq and fq are binary signals.

(23)

Then the MC between g and f, µgf (x, y), can be expressed by use of the threshold
decomposition of g and f. It turns out to be the sum over all amplitudes of the linear
correlations between thresholded versions of g and f at every gray -level value q31:

Q -1 Q -1 Q -1

µgf (x, y) = ggfq (x, y) =EYgQ! (x, y) _ E[gq * f }x, y), (24)
q =1 q =1 q =1

where Q is the number of gray levels of the imagesy f9 is the linear cross correlation
between the qth binary slices fq and gq and the * denotes the linear correlation operation,
which can be realized optically. To obtain Eq. (24) it has been taken into account that, for
binary qth thresholded input signals, the MC and the linear correlation coincide [see Eqs.
(19) and (21)] because the minimum of two binary numbers is equal to their product.
Thus the result expressed by Eq. (24) together with the ability of optical systems to
perform linear correlations and the computational cost of the digital calculation of Eq.
(21) encouraged us to implement the MC optically48.

3.1. Experimental system

The first step is to obtain the optical correlations between the different thresholded
images g

`
and fq. This can be accomplished in a programmable morphological

processor2, 34 or in a conventional VanderLugt correlator49. However, in these processors
the optical intensity output is obtained instead of the amplitude- correlation output needed
in Eq. (24). This drawback, as is explained below, can be overcome by use of a joint
transform correlator (JTC) scheme5o

For obtaining the MC, the sum of Eq. (24) is performed on the joint power spectrum
(JPS), which is the actual intensity output detected in the intermediate step of the JTC.
So the amplitude- addition requirement in Eq. (24) implies that the JTC architecture is
essential for obtaining the MC optically. Note that the phase is coded as intensity in the
JPS; hence no phase information has been lost. A final Fourier transfrom will provide the
MC.

So, as mentioned above, the first step in obtaining the optical MC is the calculation
of each binary slice joint power spectrum, JPSq. The obtained distributions are added as

Q-1 Q-1 2 Q-1 2JPSE(u,v) = JPSg(u,v) = IFg(u,v)I +EIGg(u,v)I +
q=1 q=1 q=1

+ E FQ (u, v)Gq (u, u) expP 124)q (u, v)]+ E Fq (u, v)Gq (u, v) exp[i24)q (u, v)].
q=1 q=1

(25)
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v* (*’ y) = Z (*’ y> =X v, (*» y) = S k * f,1*> y)> (24)
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JPS z(u,v) = X JPS>,i;) = X|FqM2 +S|Gq(U)i;)|2 +
9=1 9=1 9=1

9-1 r , 9-1
+ 2] Fq (“» (“» U) eXPL- i2<bq (“- «)]+ X ^Fq (“» U)G9 (“» V) eXp[l2(|)q (u, ll)]

9=1 9=1

(25)
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Comparison with Eq. (24) shows that the Fourier transform of the third term gives the
MC between the scene g(x, y) and the reference f(x, y) object.

In our implementation we use a JTC, as shown in Fig. 9. The thresholded versions
of the input and the reference are displayed side by side in an Epson liquid -crystal SLM.
The JPSq of each binary slice is recorded with a CCD camera and stored. The JPSE is
obtained as a summation [Eq. (25)] and readdressed to the SLM by a frame grabber. The
fmal MC is achieved at the joint transform output plane. The generation of threshold
components and the addition operation are done electronically.

SLM

Point Source

Input Scene

JPS

Reference Object

Figure 9: The JTC setup.

With regard to the speed of the process, the bottleneck in the system is the video
rate of the SLM (25 frames /s in our case), which is used to display both the binary slices
and the addition of the JPS, which requires a two -cycle JTC architecture. The speed of
the system can be significantly increased if it is splitted in two subsystems, each
composed of a SLM, a Fourier transforming lens, and a CCD camera. In the first
subsystem the input is the threshold decomposition of the joint input scene. The addition
of the JPS obtained is fed into the second subsystem to produce the fmal MC.

3.2. Experimental results

For demonstrating the advantages of the MC for image detection, optical
experiments have been performed by use of the above -described JTC. We compare the
linear correlation and the nonlinear MC in our optical experiments. In the SLM a joint
input image composed of the input scene in the upper half and the reference object in the
lower half is displayed. The input scene contains two objects on a dark background. A
replica of the object to be recognized (target), used as the reference, is placed below the
corresponding input scene. The objects in the joint input image have 16 gray -level values,
and the outer shapes are identical. This implies that we are adding the JPS's of 16 binary
input scenes for performing the MC. Moreover, the saturation effect of the camera
induces the enhancement of the high- frequency components. However, in spite of the
bias building (dc plus low- spatial- frequency content) carried with each joint transform
pattern, their addition, as performed electronically, does not involve any drawback in the
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of the JPS obtained is fed into the second subsystem to produce the final MC.

3.2. Experimental results

For demonstrating the advantages of the MC for image detection, optical 
experiments have been performed by use of the above-described JTC. We compare the 
linear correlation and the nonlinear MC in our optical experiments. In the SLM a joint 
input image composed of the input scene in the upper half and the reference object in the 
lower half is displayed. The input scene contains two objects on a dark background. A 
replica of the object to be recognized (target), used as the reference, is placed below the 
corresponding input scene. The objects in the joint input image have 16 gray-level values, 
and the outer shapes are identical. This implies that we are adding the JPS’s of 16 binary 
input scenes for performing the MC. Moreover, the saturation effect of the camera 
induces the enhancement of the high-frequency components. However, in spite of the 
bias building (dc plus low-spatial-frequency content) carried with each joint transform 
pattern, their addition, as performed electronically, does not involve any drawback in the
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recording of all the frequency components. We simply add the JPS's and rescale the sum
JPSE before displaying it in the SLM for the next step.

The most interesting property of MC is its ability to recognize low -intensity images
in presence of high -intensity patters to be rejected. In Fig. 10, target C is the low -
intensity object to be detected against a high -intensity one, D.

Ab

Figure 10: Input image containing the low- intensity object to be detected, C, against a high -
intensity one, D.

Since conventional correlation is proportional to intensity and sensitive to shape
variations that do not exist in this case, any linear filtering will produce a higher peak for
the brighter object and so will not be able to distinguish the dark object in the presence of
the bright one. On the other hand, MC, owing to its nonlinearity, pro -vides a higher peak
for the dark object, so correct detection is obtained. The linear correlation and the MC
peaks for this case are shown in Fig. 11. It is clear that linear correlation detects the
brightest object, thus producing a false alarm [Fig. 11(a)]. With the MC a threshold lower
than 50% is enough to reject the high -intensity object [Fig. 11(b)].
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Figure 11: Experimental output plane containing the optical correlations of the scene shown in Fig.
10. The two -dimensional plots cover the area around the correlation peaks. (a) Linear correlation y.

(b) MC It

3.3. Rotation- invariant morphological correlation

The MC does not provide detection with rotation invariance. To achieve this, we
have proposed5' a modification of this nonlinear correlation and introduced an enhanced
morphological correlation that we call rotation invariant morphological correlation
(RIMC). In addition to a high discrimination capability for detecting images with high
resemblance, it also offers a robust rotation invariant detection for low- intensity images
in the presence of high intensity patterns to be rejected.

As in rotation invariant linear correlation, the technique is based on the expansion of
a function expressed in polar coordinates into circular harmonics (CH)52.53 The
expansion of a function f(r, B) can be written as

+00

f(r,0)= fm(r)exp(im0), (26)
m =-ao

where
2,,

(r) =
J
f (r, 0) exp(- im0)d0 (27)

m is the order of the CH component (CHC). The circular harmonic filter (CHF)
introduced by Hsu et aí.52, 53 provides full rotation invariance in addition to shift
invariance. The detection of a target in a scene is achieved by camping out the correlation
between a scene g(r, 0) and a CHC, fn,(r, B)
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3.3. Rotation-invariant morphological correlation

The MC does not provide detection with rotation invariance. To achieve this, we 
have proposed51 a modification of this nonlinear correlation and introduced an enhanced 
morphological correlation that we call rotation invariant morphological correlation 
(RIMC). In addition to a high discrimination capability for detecting images with high 
resemblance, it also offers a robust rotation invariant detection for low-intensity images 
in the presence of high intensity patterns to be rejected.

As in rotation invariant linear correlation, the technique is based on the expansion of 
a function expressed in polar coordinates into circular harmonics (CH)52'53. The 

expansion of a function f(r, 6) can be written as

+QOf(r,e) = XX(r)exP(*m0)’ (26>
m=-oo

where
2jt

fm (f) = J7(r > 9) exp(-im0)d0 (27)
o

m is the order of the CH component (CHC). The circular harmonic filter (CHF) 
introduced by Hsu et al.52, 53 provides full rotation invariance in addition to shift 
invariance. The detection of a target in a scene is achieved by camping out the correlation 
between a scene g(r, 6) and a CRC,fm(r, 6)
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Ym(r, B) = g(r, e) * fm(r, 8) (28)

where * denotes linear correlation.

Because the MC yields better pattern recognition performance than the linear
correlation, and because it is suitable for optical implementation, we will use it to
recognize objects with different orientations. In Eq. (24), assume that each q -binary slice
of the reference object, fq(r,O), can be decomposed into circular harmonic functions

µ(r, 0) _
Q-1

E g (r, 0) * f,(r , 0) =
q=1

_ E [gg (r, 0) * E fg., (r, 8)1=
q=1 m=-co

ro

- E E Igq (r, 0)* fqm (r, e)1
m=-m q=1

(29)

Rotation invariant pattern recognition can be achieved by using only one component
of the CH decomposition and then performing the linear correlation. If only one CHC is
used for each q- correlation in Eq. (29), the nonlinear correlation will allow the detection
of a target for any angular orientation. This means that other nonlinear correlations based
on the morphological correlation could be devised. So taking into account the previous
argument and using only one m -order CHC in Eq. (29), we call this correlation the RIMC
defined as

Q-1

µef(r, 0) =E gq(r, 0) * fq., (r, 0)
q=1

(30)

The correlation, p frog) is also a nonlinear correlation, inspired by the MC. The

difference between J 1 (r, g) (RIMC) and u (r, B) (MC) is that for the RIMC only part

fqm (x, y) of the thresholded reference object fq (x, y) is used, instead of the total
information of fq (x, y) that is used for the MC.

3.4. Simulation Results

In this section we present some computer simulations to compare the linear
correlation and the morphological correlation and its applications to rotation invariant
pattern recognition.
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Figure 12 shows an input scene that is made up of two different kinds of objects: the
reference object is the dark one, and the bright lower one is an object to be rejected. In
order to perform pattern recognition with rotation invariance, the object to be detected
appears with two orientations rotated each other by 90 °.

Figure 12: Input scene with the referencce object rotated by 90 °. The lower object is to be rejected.

The choice of the order and of the expansion center is important for both the CHC
in the linear case and for the RIMC case. In Eq. (28), the function f, (x, y) takes into
account the choice of the CH order, and of the expansion center as discussed elsewhere54,
ss In the latter paper, both the energy and PCE maps of the gray -level reference object
are calculated and the maximum of the PCE map that also has a high value in the energy
map is selected. This ensures both a sharp correlation peak shape and a high correlation
energy value.

For the RIMC, the CHCs of the binary q -th slices of the reference object versions
are required. We chose the same expansion order as for the linear case, because that
parameter is strongly dependent on the geometry of the reference object and also the
shape of each binary slice depends strongly on the shape of the reference object. For the
expansion center, we assumed that all of the expansion centers occur around the center of
mass of the reference object, because the energy distribution is strongly related to that
mass center. So, to perform the RIMC we select the center of mass of the reference object
as the expansion center for all the q -th binary slice CHCs.

The linear correlation for an m=4 CHF is shown in Fig. 13. Note that this operation
is not able to detect the reference object and a false alarm appears. On the other hand, if
we use the same input scene with the RIMC, we obtain the correlation output shown in
Fig. 14. We used the m=4 CHC order for each binary slice. Now we detect both the
rotated version of the reference object and a threshold value of 50% is enough to reject
the false alarm.
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Figure 13: Rotation invariant linear correlation using a fourth -order CHF.

Figure 14: Rotation invariant morphological correlation using a fourth -order CHF.

These computer simulations demonstrate the improved performance of the RIMC
over the CHC linear correlation.

3.5. Modified morphological correlation

The optoelectronic implementation of MC needs a considerable amount of
computational efforts. Some methods can be used in order to reduce the number of
correlated slices obtained after either uniform or nonuniform threshold decomposition, so
reducing that computational time.

In a recent paper56 we proposed an alternative procedure for increasing the
selectivity and decreasing the computational requirements of the optoelectronic
implementation of the MC. This method which provides a modified version of the MC,
the modified morphological correlation (MMC), is not based on threshold decomposition
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but on bit -representation decomposition. The image is decomposed into a set of binary
slices, each corresponding to a specific bit in the binary representation of the image
pixels. Thus, an image with 256 gray- levels is decomposed into only 8 binary slices. By
applying a linear correlation between the binary slice of the reference -image set and the
associated slice from the input -scene binary set, one obtains

m

Rgf (x, y) _ E gq (x, y) * f, (x, y), (31)
q =1

where m is the number of binary slices.

The optical implementation can be done with a JTC too. In order to show the
performance of the MMC, let us consider Fig. 15, which is the input to the JTC. Fig 15(a)
shows the entrance scene and Fig. 15(b) corresponds to the reference target to be
detected. The objects show only 16 gray levels, so we work with 4 bit planes. Fig. 16
shows the decomposition of the joint input scene into the 4 bit maps.

r. ,L

(a)

03)

Figure 15: Input image to the JTC. (a) is the entrance scene, and (b) is the reference object to be
detected.
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Mapa de bit 0 Mapa de bit 1

fr,
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Figure 16: Decomposition of the joint input scene into the 4 bit maps.

In Fig. 17 we have the detection of the target using the MMC. In Fig. 17(a) the
captured output correlation plane is presented, while in Fig. 17(b) a profile of the line
passing through the two correlation peaks is shown. A thresholded of 24 % is enough to
reject the undesired peak. This threshold is lower to that corresponding to MC, close to
45 % in this case.

(b)

24%

Figure 17: (a) Captured output correlation plane, and (b) profile of the line passing through the two
correlation peaks.
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Figure 17: (a) Captured output correlation plane, and (b) profile of the line passing through the two
correlation peaks.
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4. FINAL REMARKS

It has been demonstrated the feasibility of optoelectronic image processing with a
variety of systems, including shadow casting correlators and joint transform correlators.
These systems have been experimentally applied to image processing (detail
enhancement, median filtering) and to pattern recognition (bit plane and morphological
correlation).

Despite of the achievements in the field, several issues remain unexplored. In the
next future the effect of noise is to be analyzed. From the theory it has been established
that the nonlinear correlations will perform better than classical, but the extent of the
enhancement is to be checked. Also there are promising lines in cases where the
chromatic information is relevant, and multichannel decompositions are being checked.

Finally, there is a trend to enhance the performance in the systems, allowing higher
resolution images and faster processing. This depends on the availability of faster
optoelectronic hardware, mainly SLM's.
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