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ABSTRACT

This talk will first give a general discussion on the ultrasound media characteristics of blood and spectral densities of tissues.
The first-order scattering theory, multiple scattering theory, Doppler spectrum, cw and pulse scattering, focused beam, beam
spot-size, speckle, texture, and rough interface effects will be presented. Imaging through tissues will then be discussed in
terms of temporal and spatial resolutions, contrast, MTF (modulation transfer function), SAR and confocal imaging
techniques, tomographic and holographic imaging, and inverse scattering. Next, we discuss optical diffusion in blood and
tissues, radiative transfer theory, photon density waves, and polarization effects.

Keywords: Ultrasonic scattering and imaging in tissues and blood.

1. INTRODUCTION

For the past several decades, ultrasonic imaging has been studied extensively and a detailed historical account has been given
in the excellent monograph by Shung and Thieme in 1993 [1]• We have also conducted research on several aspects of wave
propagation and scattering in random media, and therefore, this paper presents an overview of some of the physical principles
related to applications in ultrasound imaging oftissues and blood.

We start with ultrasound scattering in tissues, clarifying coherent and incoherent fields, multiple scattering effects, beam
scattering, and pulse and interface effects. Next, we discuss ultrasound scattering by blood including Doppler, pulse
scattering and beam scattering. We then focus on spatial and temporal resolutions including MTF, SAR, and confocal
imaging. We will also add some discussions on optical diffusion in tissues and blood, and Wigner distributions.

2. ULTRASONIC SCATTERING IN TISSUES 111-161

For ultrasound, tissues can be considered "random continuum", which means that the density p and the compressibility ic are
continuous random functions of position. Under this assumption, we first obtain the scattering cross-section per unit volume
ofthe tissue.

2.1 Ultrasonic tissue characteristics

Consider a volume öv of the tissues with the density Pe and the compressibility îç, which are different from the surrounding
average density p and compressibility K. Under the assumption that the medium Pe and îç. are only slightly different from p
and ic, we can use the Born approximation to obtain the following well-known formula for the scattering amplitude:

= L( + ycos8 ) e''dv' (1)

where

TK =
1e —

= compressibility fluctuation

= Pe = density fluctuation.
Pc
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<ff*> = (k)2 1ad(o,l) = ______ $$< r(i)r() > e'

2 Xd y ZdBK(F) = aKexP(222)
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B(F)

BKp(F) 0.

And typically, o- lO, 1 £2 3Opm and e, 200pm.
We then get (Figure 2)

(7)

We then obtain the differential scattering coefficient Ud or the differential cross-section per unit volume of the tissue

(Figure 1).

(2)

where

;v(j;) = 7K() + (F)cosO
and

i: = k(i—6).
We can express (2) using the spectral densities

s(k) = JBY()e'''dvd (3)
(2ir)

and B7O) is the correlation function given by

B7O,) = <r(DrQ)> = BKO) + BQ,) cos2O + 2BKP(Fd) cosO . (4)

We therefore have the expression for ad

ad (3' 1) = () k4 [SK (ks) + S (ks)cos2 0 + 2s (ks)cos 8] . (5)

The unit commonly used for ad (differential cross-section per unit volume) of the tissue is cm2/cm3 sr cm ' sr ' wheresr
= steradian (unit solid angle).

This can be

(6)

z

öv

;(O, q)

y

Tissues
Figure 1 : Incident wave is propagating in the direction

I (unit vector) and the scattered wave is observed Figure 2: Anisotropic tissues.
in the direction ô (unit vector).

2.1.1 Anisotropic tissue 121

Tissues such as myocardium are often anisotropic. For example, they may be elongated in one direction.
expressed using Gaussian correlation function as:

We can also assume that
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SK(k) = aKl23
exp[—1(k1e +k2e +k3)] (8)

8irJ 4

where

k1 = k(sin9cosçb —
sin90cosçb0)

k2 k(sinsinçb — sinO0sinq5)

k53 k(cos91 — cos90).

It is known that anisofropic tissues such as shown above exhibit the double peaks in the scattering pattern as shown in Figure 3.

Figure 3: Differential Scattering Coefficient cr for anisotropic tissues.

2.1.2 Spectral density SK(kS)

The Gaussian spectrum (8) is often used since it is mathematically simple and includes the essential parameters crK I 2'
and e3 . However, other spectra which may be more representative of the actual tissues have been proposed including fluid
spheres, exponentials and modified exponentials. Here, we add the following power-law spectrum.

SK(k) = SK(O) [ 1 + (k51e1)2 + (k52e2)2 + (k3e3)2 ]/2 (9)

where k51 , k52 and k3 are given in (8), and n is called "spectral index".
If the spectral index n is 3, (9) reduces to the "Henyey-Greenstein" formula and if n 4, it reduces to the spectrum for the
exponential correlation function. In general, for the isotropic case, we write

B(rd) = B(O) (r)VK(!) (10)
2 F(v) e e

F(v+-) e3
and S(k) = B(0) 2

IT(v) (1 + ke2)"2
validwhen v > — 3/2.

2.2 Coherent and incoherent waves
As the pressure wave p(F) propagates through a random medium such as tissue, the wave experiences random fluctuation in
space and time, and becomes a random function. We can therefore express the wave as a sum of the coherent (average)
<p> and incoherent (diffuse) Pd components

p = <p> + Pd (11)

For a time harmonic wave with exp(—icot) time dependence, we can express p in (11) in the complex plane (Figure 4).

0
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showing attenuation (positive imaginary part).
The incoherent field Pd can be obtained by several formulations depending on the amount of fluctuations. For very weak
fluctuations, we use the first-order scattering theory. As the fluctuations increase, the second-order and multiple scattering
need to be considered. In the limit ofmany scattering, we have diffusion approximations (Figure 5).

Tr -V Re
—t:i — 1— First order

0

—IT:I 0 r::i— Multiple scattering

Diffusion (random wa&)

0*—.--0i

Figure 5: First order, multiple scattering, and diffusion.

2.3 Beam propagation and scattering
Let us consider a collimated Gaussian beam propagating in a random medium which is given by the Gaussian correlation
function.

= exp(-4). (17)

The beam at z =0 is given by

p(z=O) = 4exp[-()] (18)

I

I f
Wb

Figure 6: Collimated beam in random medium Figure 7: Spot size of focused beam

where p2 =x2 + y2 and w0 is the beam size (Figure 6).

wo:

zo
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Due to the random medium, the total beam size is expanded, and the intensity at zis given by

1(z) = 42 exp[—
2p2

• (19)
w(z) w(z)

The beam size w(z) is given by
2 2z 2 z0w0 112

w(z) = wo [ 1 + —i- (1 + —-—-----)]
' (20)

zo 3 e

where z0 = , £ = correlation distance, z = optical depth =sJ(k2o)z.
This is pictured in Figure 6.
If the beam is focused at the focal distancef then the beam spot size at z f is given by

Wb(z= f) = w () [ 1 + v (WO)2 ]1/2 . (21)
zo 3 e

2.4 Pulse propagation
Next we consider the propagation of a short pulse in a random medium. As the wave undergoes multiple scattering, the wave
experiences time delay, and its cumulative effect is expressed by the pulse broadening (Figure 8). The broadening depends
on the medium and the optical scattering depth and is approximately given by

T = () (22)
C 2k22

where m is the optical scattering depth and e is the correlation distance, p is a constant (1 to 2) depending on the medium
correlation function, and p = 1 for Gaussian correlation function.

(a)

(b)

Figure 8: Pulse propagation for (a) weak fluctuation and (b) strong fluctuation.

2.5 Interface effects 151161

When a wave, which has propagated through a random medium, is incident on a rough interface, the scattered wave is
modified by the roughness (Figure 9). Ifthe surface is smooth, the reflected wave behaves in a manner similar to the incident
wave. As the roughness increases, the diffuse components increase and the coherent component diminishes. The incident
wave has already propagated through the random medium, and therefore it consists of the coherent and the incoherent waves.

We express this by the incident specific intensity I(i), which is a function of the direction i. The scattered specific

intensity 15(ô) is then given by

I(ô) = 1
$a°(ô,1) I(I) dw (23)

47rcos95

L/C
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where is the scattering cross-section per unit area of the rough surface and dw is the elementary solid angle for i.
If the surface is Lambertian, then, the cross-section is given by

ao(ô1) = oo cos cos . (24)

And therefore,

15(ô) = !!L JI,cosOdw . (25)4,r

-
———

1

—--- Ii(i) \ 0

\ N flat surface \ 7: \
\

N

N \ ///
N I /// Ninterface I (1)/I\ It

Figure 9: Reflection by flat and rough interfaces. Figure 10: Specific intensities at the interface.

3. SCATTERING IN BLOOD, SCATTERING COEFFICIENTS, AND DOPPLER SHIFT

The ultrasonic scattering amplitude of a single red blood cell is well known {5]

f(ô 1) = (
K —K p — 3p cos ) (26)

3 K 2P3P
where a is the radius of the equivalent spherical cell. The differential scattering cross-section per unit volume of the blood is
therefore

Hf(H) 2
a(o,i) =

Ve f(o,i) (27)

where H is the hematocrit (0.4 for human), V is the volume of the single cell (4rca3/3), andf(H) is the packing factor [1]
The Percus-Yevick packing factor for hard spheres is often used as an approximation

f(H) = (28)

If the blood is moving with velocity V which consists of the average <V> = U and the fluctuating velocity Vp then we

have the cross-section with Doppler shift.

1/2 —

2ir (an-k. U)2
cr(o,i , iv) = a(o,i) 2 2 exp —

2 (29)
2kaj
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where we assumed the fluctuating velocity V is Gaussian distributed, and k =k (i — ô).

4.1 Modulation Transfer Function (MTF) [5H7], 191

MI --
p0 kp

4. IMAGING AND RESOLUTION

LAO2 L 1At (—) (—)C 2 C2k2p
where L is the propagation distance.
Note that the coherence length Po is approximately given by

p0 —= and ith o (tissues).
Jr0

x

randomum
point

source

x

Figure 11: Image of a point source through random medium.

//

Figure 12: Airy disk P and incoherent intensity P1 Figure 13: Wigner distribution

As a wave propagates through a random medium, the wave at any point is a mixture of coherent and incoherent waves. If we
observe this wave with a lens or an array of detectors, we no longer obtain the Airy disk (Figure 1 1). The coherent intensity
PC is the Airy disk with its magnitude diminished by the optical depth exp (-;). The incoherent intensity F, is spread out due
to the angular spread AO, which is related to the correlation distance (coherence length) p ofthe wave (Figure 12).

The coherence length Po 5 an important quantity not only giving the angular spread, but it also gives the pulse spreads At

(30)

(31)

(32)

4 (AG)f
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4.2 SAR and Confocal imaging
Synthetic aperture radar and confocal imaging techniques have been used extensively to obtain high resolution images.
Conventional linear SAR can be generalized to circular or other SAR geometries [12] Confocal imaging is similar to SAR
and has been used extensively in optical applications. It is also possible to make use of the signal processing techniques such
as Capon's method. It has been shown that Capon's method combined with chirp pulse SAR can give an improved image,
even under some multiple scattering environments.

5. OTHER IMAGING TECHNIQUES

Several other imaging techniques have been proposed, including the use of coherent backscattering [8J[1O][12] tomographic and
holographic imaging, and speckle interferometry. In optical imaging for tissues, diffusion approximations are extensively
used including photon density waves [111, polarization, and pulse scattering.

6. WIGNER DISTRIBUTION

Let us formulate the problem of transmitting aperture, scattering medium, and receiving aperture (Figure 13). The
formulation is similar to those given by Waag but makes use of the Wigner distribution. At the emitter E, the aperture
distribution is given by p1 () . The mutual coherence function at E is given by

= <Pl()P')> (33)

Wigner distribution W(,25 ,k) is then obtained by

W(,k) = fF(, ') d5d (34)

where Pd P1 P1 and P ( + p')/2.
Note that W is similar to the specific intensity. The difference is that the specific intensity is real and positive, while the
Wigner distribution can be negative.

Now, the Wigner distribution propagates through the random medium and at i ,we have W(i, kj) incident upon V. The

scattered Wigner distribution W(F, k) is then given by

w(F,i;) = Js(k,k1)WO,k)dk (35)

where S is the phase function.
The scattered Wigner distribution W5 then propagates through the random medium and reaches the detector D. The received
power is then given by

j: (36)

where Ar 5 the Wigner distribution of the aperture distribution.
This formulation requires a detailed study of the propagation characteristics through the random medium such as those
obtained by radiative transfer theory [5j

7. CONCLUSION

In this paper, we presented an overview of the ultrasound imaging of tissues and blood. Included are general discussions on
coherent and incoherent waves, beam, rough interface, speckle, MTF, SAR, optical diffusion, and Wigner distributions.
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