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ABSTRACT

Manufacturing processes that can create extremely small machines have been developed in recent years.

Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than 1 mm but more

than 1 micron, that combine electrical and mechanical components and that are fabricated using integrated circuit

batch-processing techniques. Electrostatic, magnetic, pneumatic and thermal actuators, motors, valves, gears and

tweezers of less than 100 mm size have been fabricated. These have been used as sensors for pressure, temperature,

mass flow, velocity and sound, as actuators for linear and angular motions, and as simple components for complex

systems such as micro-heat-engines and micro-heat-pumps. The technology is progressing at a rate that far exceeds

that of our understanding of the unconventional physics involved in the operation as well as the manufacturing of

those minute devices. The primary objective of this paper is to critically review the status of our understanding of

fluid flow phenomena particular to microdevices. Continuum as well as molecular approaches to the problem will be

surveyed. A second objective is to discuss a novel pump/turbine suited for MEMS applications.

1. INTRODUCTION

Tool making has always differentiated our species from all others on Earth. Aerodynamically correct wooden spears

were carved by archaic Homo sapiens close to 400,000 years ago. Man builds things consistent with his size,

typically in the range of two orders of magnitude larger or smaller than himself, as indicated in Figure 1. But

humans have always striven to explore, build and control the extremes of length and time scales. In the voyages to

Lilliput and Brobdingnag of Gulliver s Travels, Jonathan Swift speculated on the remarkable possibilities which

diminution or magnification of physical dimensions provides. The Great Pyramid of Khufu was originally 147 m

high when completed around 2600 B.C., while the Empire State Building constructed in 1931 is presently after

the addition of a television antenna mast in 1950 449 m high. At the other end of the spectrum of man-made

artifacts, a dime is slightly less than 2 cm in diameter. Watchmakers have practiced the art of miniaturization since

the thirteenth century. The invention of the microscope in the seventeenth century opened the way for direct

observation of microbes and plant and animal cells. Smaller things were man-made in the latter half of this

century. The transistor invented in 1947 in today integrated circuits has a size of 0.25 micron in production and

approaches 50 nanometers in research laboratories. But what about the miniaturization of mechanical

parts machines envisioned by Richard Feynman in a legendary lecture delivered in 1959?

Microelectromechanical systems refer to devices that have characteristic length of less than 1 mm but more than 1

micron, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-

processing technologies. Current manufacturing techniques for MEMS include surface silicon micromachining;

bulk silicon micromachining; lithography, electrodeposition and plastic molding (or, in its original German,

Lithographie Galvanoformung Abformung, LIGA); and electrodischarge machining (EDM).

MEMS are finding increased applications in a variety of industrial and medical fields, with a potential worldwide

market in the billions of dollars. Accelerometers for automobile airbags, keyless entry systems, dense arrays of

micromirrors for high-definition optical displays, scanning electron microscope tips to image single atoms, micro-

heat-exchangers for cooling of electronic circuits, reactors for separating biological cells, blood analyzers and

pressure sensors for catheter tips are but a few of current usage. Microducts are used in infrared detectors, diode
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lasers, miniature gas chromatographs and high-frequency fluidic control systems. Micropumps are used for ink jet

printing, environmental testing and electronic cooling. Potential medical applications for small pumps include

controlled delivery and monitoring of minute amount of medication, manufacturing of nanoliters of chemicals and

development of artificial pancreas.

Not all MEMS devices involve fluid flows, but the present paper will focus on the ones that do. Microducts,

micropumps, microturbines and microvalves are examples of small devices involving the flow of liquids and

gases. MEMS can also be related to fluid flows in an indirect way. The availability of inexpensive, batch-

processing-produced microsensors and microactuators provides opportunities for targeting small-scale coherent

structures in macroscopic turbulent shear flows. Flow control using MEMS promises a quantum leap in control

system performance. Because of size limitation, the present paper only touches on its broad subject matter and the

reader is referred to three other sources for further details (Gad-el-Hak, 1999; 2000; 2002). The present article is an

abridged version of Chapters 4 and 26 of the handbook by Gad-el-Hak (2002).

2. FLUID MECHANICS ISSUES

The rapid progress in fabricating and utilizing microelectromechanical systems during the last decade has not been

matched by corresponding advances in our understanding of the unconventional physics involved in the operation

and manufacture of small devices. Providing such understanding is crucial to designing, optimizing, fabricating

and operating improved MEMS devices.

Fluid flows in small devices differ from those in macroscopic machines. The operation of MEMS-based ducts,

nozzles, valves, bearings, turbomachines, etc., cannot always be predicted from conventional flow models such as

the Navier—Stokes equations with no-slip boundary condition at a fluid-solid interface, as routinely and

successfully applied for larger flow devices. Many questions have been raised when the results of experiments with

microdevices could not be explained via traditional flow modeling. The pressure gradient in a long microduct was

observed to be non-constant and the measured flowrate was higher than that predicted from the conventional

continuum flow model. Load capacities of microbearings were diminished and electric currents needed to move
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micromotors were extraordinarily high. The dynamic response of micromachined accelerometers operating at

atmospheric conditions was observed to be over-damped.

In the early stages of development of this exciting new field, the objective was to build MEMS devices as

productively as possible. Microsensors were reading something, but not many researchers seemed to know exactly

what. Microactuators were moving, but conventional modeling could not precisely predict their motion. After a

decade of unprecedented progress in MEMS technology, perhaps the time is now ripe to take stock, slow down a

bit and answer the many questions that arose. The ultimate aim of this long-term exercise is to achieve rational-

design capability for useful microdevices and to be able to characterize definitively and with as little empiricism as

possible the operations of microsensors and microactuators.

In dealing with fluid flow through microdevices, one is faced with the question of which model to use, which

boundary condition to apply and how to proceed to obtain solutions to the problem at hand. Obviously surface

effects dominate in small devices. The surface-to-volume ratio for a machine with a characteristic length of 1 m is 1

m
-1

, while that for a MEMS device having a size of 1 µm is 10
6
 m

-1
. The million-fold increase in surface area

relative to the mass of the minute device substantially affects the transport of mass, momentum and energy through

the surface. The small length-scale of microdevices may invalidate the continuum approximation altogether. Slip

flow, thermal creep, rarefaction, viscous dissipation, compressibility, intermolecular forces and other

unconventional effects may have to be taken into account, preferably using only first principles such as

conservation of mass, Newton s second law, conservation of energy, etc.

In this paper, I shall discuss continuum as well as molecular-based flow models, and the choices to be made.

Computing typical Reynolds, Mach and Knudsen numbers for the flow through a particular device is a good start

to characterize the flow. For gases, microfluid mechanics has been studied by incorporating slip boundary

conditions, thermal creep, viscous dissipation as well as compressibility effects into the continuum equations of

motion. Molecular-based models have also been attempted for certain ranges of the operating parameters. Use is

made of the well-developed kinetic theory of gases, embodied in the Boltzmann equation, and direct simulation

methods such as Monte Carlo. Microfluid mechanics of liquids is more complicated. The molecules are much

more closely packed at normal pressures and temperatures, and the attractive or cohesive potential between the

liquid molecules as well as between the liquid and solid ones plays a dominant role if the characteristic length of

the flow is sufficiently small. In cases when the traditional continuum model fails to provide accurate predictions

or postdictions, expensive molecular dynamics simulations seem to be the only first-principle approach available to

rationally characterize liquid flows in microdevices. Such simulations are not yet feasible for realistic flow extent

or number of molecules. As a consequence, the micro-fluid-mechanics of liquids is much less developed than that

for gases. The article will conclude with a very brief discussion of a novel pump/turbine suited for MEMS

applications.

3. FLUID MODELING

There are basically two ways of modeling a flowfield. Either as the fluid really is a collection of molecules or

as a continuum where the matter is assumed continuous and indefinitely divisible. The former modeling is

subdivided into deterministic methods and probabilistic ones, while in the latter approach the velocity, density,

pressure, etc., are defined at every point in space and time, and conservation of mass, energy and momentum lead

to a set of nonlinear partial differential equations (Euler, Navier—Stokes, Burnett, etc.). Fluid modeling

classification is depicted schematically in Figure 2.

The continuum model, embodied in the Navier—Stokes equations, is applicable to numerous flow situations. The

model ignores the molecular nature of gases and liquids and regards the fluid as a continuous medium describable

in terms of the spatial and temporal variations of density, velocity, pressure, temperature and other macroscopic

flow quantities. For dilute gas flows near equilibrium, the Navier—Stokes equations are derivable from the

molecularly-based Boltzmann equation, but can also be derived independently of that for both liquids and gases. In

the case of direct derivation, some empiricism is necessary to close the resulting indeterminate set of equations.

The continuum model is easier to handle mathematically (and is also more familiar to most fluid dynamicists)
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Figure 2. Molecular and continuum flow models.

than the alternative molecular models. Continuum models should therefore be used as long as they are applicable.

Thus, careful considerations of the validity of the Navier—Stokes equations and the like are in order.

Basically, the continuum model leads to fairly accurate predictions as long as local properties such as density and

velocity can be defined as averages over elements large compared with the microscopic structure of the fluid but

small enough in comparison with the scale of the macroscopic phenomena to permit the use of differential calculus

to describe them. Additionally, the flow must not be too far from thermodynamic equilibrium. The former

condition is almost always satisfied, but it is the latter which usually restricts the validity of the continuum

equations. As will be seen in the following section, the continuum flow equations do not form a determinate set.

The shear stress and heat flux must be expressed in terms of lower-order macroscopic quantities such as velocity and

temperature, and the simplest (i.e. linear) relations are valid only when the flow is near thermodynamic equilibrium.

Worse yet, the traditional no-slip boundary condition at a solid-fluid interface breaks down even before the linear

stress—strain relation becomes invalid.

To be more specific, we temporarily restrict the discussion to gases where the concept of mean free path is well

defined. Liquids are more problematic and we defer their discussion to a later section. For gases, the mean free path

L is the average distance traveled by molecules between collisions. For an ideal gas modeled as rigid spheres, the

mean free path is related to temperature T and pressure p as follows

  
L =   

   
  

 

   

1

2 22 2π σ π σn

k T

p
= (1)

where n is the number density (number of molecules per unit volume), σ is the molecular diameter, and k is the

Boltzmann constant (1 38 10 23. × −
 J/K.molecule).

The Navier—Stokes equations are valid when L is much smaller than a characteristic flow dimension L . As this

condition is violated, the flow is no longer near equilibrium and the linear relation between stress and rate of strain

and the no-slip velocity condition are no longer valid. Similarly, the linear relation between heat flux and

temperature gradient and the no-jump temperature condition at a solid-fluid interface are no longer accurate when L
is not much smaller than L.

The length-scale L can be some overall dimension of the flow, but a more precise choice is the scale of the gradient

of a macroscopic quantity, as for example the density ρ,

L

y

  = ρ
∂ρ
∂

(2)

The ratio between the mean free path and the characteristic length is known as the Knudsen number
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Kn

L
  = L

(3)

and generally the traditional continuum approach is valid, albeit with modified boundary conditions, as long as         

Kn < 0.1.

There are two more important dimensionless parameters in fluid mechanics, and the Knudsen number can be

expressed in terms of those two. The Reynolds number is the ratio of inertial forces to viscous ones

Re   
 = v Lo

ν
(4)

where vo is a characteristic velocity, and ν  is the kinematic viscosity of the fluid. The Mach number is the ratio of

flow velocity to the speed of sound

Ma
v

a
o

o
  = (5)

The Mach number is a dynamic measure of fluid compressibility and may be considered as the ratio of inertial

forces to elastic ones. From the kinetic theory of gases, the mean free path is related to the viscosity as follows

  
ν µ

ρ
      = = 1

2 L vm (6)

where µ  is the dynamic viscosity, and vm  is the mean molecular speed which is somewhat higher than the sound

speed ao ,

v am o  
 

  = 8

π γ
(7)

where γ is the specific heat ratio (i.e. the isentropic exponent). Combining Equations (3)—(7), we reach the required

relation

Kn
Ma

  
 

  = π γ
2 Re

(8)

In boundary layers, the relevant length-scale is the shear-layer thickness δ, and for laminar flows

δ
L

  ~
Re

1
(9)

and therefore

Kn
Ma Ma

    ~
Re

~
Reδ

(10)

where Reδ  is the Reynolds number based on the freestream velocity vo and the boundary layer thickness δ , and Re
is based on vo and the streamwise length-scale L.

Rarefied gas flows are in general encountered in flows in small geometries such as MEMS devices and in low-

pressure applications such as high-altitude flying and high-vacuum gadgets. The local value of Knudsen number in

a particular flow determines the degree of rarefaction and the degree of validity of the continuum model. The

different Knudsen number regimes are determined empirically and are therefore only approximate for a particular

flow geometry. The pioneering experiments in rarefied gas dynamics were conducted by Knudsen in 1909. In the

limit of zero Knudsen number, the transport terms in the continuum momentum and energy equations are

negligible and the Navier—Stokes equations then reduce to the inviscid Euler equations. Both heat conduction and

viscous diffusion and dissipation are negligible, and the flow is then approximately isentropic (i.e. adiabatic and

reversible) from the continuum viewpoint while the equivalent molecular viewpoint is that the velocity distribution

function is everywhere of the local equilibrium or Maxwellian form. As Kn increases, rarefaction effects become

more important, and eventually the continuum approach breaks down altogether. The different Knudsen number

regimes are depicted in Figure 3.

As an example, consider air at standard temperature (T=288 K) and pressure ( p = ×1 01 105.  N/m
2
). A cube one

micron on a side contains 2 54 107. ×  molecules separated by an average distance of 0.0034 micron. The gas is

considered dilute if the ratio of this distance to the molecular diameter exceeds 7, and in the present example this

ratio is 9, barely satisfying the dilute gas assumption. The mean free path computed from Equation (1) is L =0.065
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Figure 3. Knudsen number regimes.

µm. A microdevice with characteristic length of 1 µm would have Kn=0.065, which is in the slip-flow regime. At

lower pressures, the Knudsen number increases. For example, if the pressure is 0.1 atm and the temperature

remains the same, Kn=0.65 for the same 1 µm device, and the flow is then in the transition regime. There would

still be over 2 million molecules in the same one-micron cube, and the average distance between them would be

0.0074 µm. The same device at 100 km altitude would have Kn = ×3 104
, well into the free-molecule flow

regime. Knudsen number for the flow of a light gas like helium is about 3 times larger than that for air flow at

otherwise the same conditions.

Consider a long microchannel where the entrance pressure is atmospheric and the exit conditions are near vacuum.

As air goes down the duct, the pressure and density decrease while the velocity, Mach number and Knudsen

number increase. The pressure drops to overcome viscous forces in the channel. If isothermal conditions prevail,

density also drops and conservation of mass requires the flow to accelerate down the constant-area tube. The fluid

acceleration in turn affects the pressure gradient, resulting in a nonlinear pressure drop along the channel. The Mach

number increases down the tube, limited only by choked-flow condition Ma=1. Additionally, the normal

component of velocity is no longer zero. With lower density, the mean free path increases and Kn correspondingly

increases. All flow regimes depicted in Figure 3 may occur in the same tube: continuum with no-slip boundary

conditions, slip-flow regime, transition regime and free-molecule flow. The air flow may also change from

incompressible to compressible as it moves down the microduct. A similar scenario may take place if the entrance

pressure is, say, 5 atm, while the exit is atmospheric. This deceivingly simple duct flow may in fact manifest

every single complexity discussed in this section. In the following four sections, we discuss in turn the

Navier—Stokes equations, compressibility effects, boundary conditions, and molecular-based models.

4. CONTINUUM MODEL

We recall in this section the traditional conservation relations in fluid mechanics. A concise derivation of these

equations can be found in Gad-el-Hak (2000). In here, we re-emphasize the precise assumptions needed to obtain a

particular form of the equations. A continuum fluid implies that the derivatives of all the dependent variables exist

in some reasonable sense. In other words, local properties such as density and velocity are defined as averages over

elements large compared with the microscopic structure of the fluid but small enough in comparison with the scale

of the macroscopic phenomena to permit the use of differential calculus to describe them. As mentioned earlier,

such conditions are almost always met. For such fluids, and assuming the laws of non-relativistic mechanics hold,

the conservation of mass, momentum and energy can be expressed at every point in space and time as a set of 5

partial differential equations as for 17 unknowns. Obviously, the continuum flow equations do not form a

determinate set. To close the conservation equations, relation between the stress tensor and deformation rate,

relation between the heat flux vector and the temperature field and appropriate equations of state relating the

different thermodynamic properties are needed. The stress—rate of strain relation and the heat flux—temperature

gradient relation are approximately linear if the flow is not too far from thermodynamic equilibrium. This is a

phenomenological result but can be rigorously derived from the Boltzmann equation for a dilute gas assuming the

flow is near equilibrium. The resulting 6 equations in 6 unknown together with sufficient number of initial and

boundary conditions constitute a well-posed, albeit formidable, problem. The system of equations is an excellent
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model for the laminar or turbulent flow of most fluids such as air and water under many circumstances, including

high-speed gas flows for which the shock waves are thick relative to the mean free path of the molecules.

Considerable simplification is achieved if the flow is assumed incompressible, usually a reasonable assumption

provided that the characteristic flow speed is less than 0.3 of the speed of sound. The incompressibility assumption

is readily satisfied for almost all liquid flows and many gas flows. In such cases, the density is assumed either a

constant or a given function of temperature (or species concentration).

5. COMPRESSIBILITY

The issue of whether to consider the continuum flow compressible or incompressible seems to be rather

straightforward, but is in fact full of potential pitfalls. If the local Mach number is less than 0.3, then the flow of a

compressible fluid like air can according to the conventional wisdom be treated as incompressible. But the

well-known Ma < 0.3 criterion is only a necessary not a sufficient one to allow a treatment of the flow as

approximately incompressible. In other words, there are situations where the Mach number can be exceedingly

small while the flow is compressible. As is well documented in heat transfer textbooks, strong wall heating or

cooling may cause the density to change sufficiently and the incompressible approximation to break down, even at

low speeds. Less known is the situation encountered in some microdevices where the pressure may strongly change

due to viscous effects even though the speeds may not be high enough for the Mach number to go above the

traditional threshold of 0.3. Corresponding to the pressure changes would be strong density changes that must be

taken into account when writing the continuum equations of motion.

Experiments in gaseous microducts confirm the above arguments. For both low- and high-Mach-number flows,

pressure gradients in long microchannels are non-constant, consistent with the compressible flow equations. There

are three additional scenarios in which significant pressure and density changes may take place without inertial,

viscous or thermal effects. First is the case of quasi-static compression/expansion of a gas in, for example, a

piston-cylinder arrangement. The resulting compressibility effects are, however, compressibility of the fluid and

not of the flow. Two other situations where compressibility effects must also be considered are problems with

length-scales comparable to the scale height of the atmosphere and rapidly varying flows as in sound propagation.

6. BOUNDARY CONDITIONS

The continuum equations of motion described earlier require a certain number of initial and boundary conditions

for proper mathematical formulation of flow problems. In this section, we describe the boundary conditions at a

fluid-solid interface. Boundary conditions in the inviscid flow theory pertain only to the velocity component

normal to a solid surface. The highest spatial derivative of velocity in the inviscid equations of motion is first-

order, and only one velocity boundary condition at the surface is admissible. The normal velocity component at a

fluid-solid interface is specified, and no statement can be made regarding the tangential velocity component. The

normal-velocity condition simply states that a fluid-particle path cannot go through an impermeable wall. Real

fluids are of course viscous and the corresponding momentum equation has second-order derivatives of velocity,

thus requiring an additional boundary condition on the velocity component tangential to a solid surface.

Traditionally, the no-slip condition at a fluid-solid interface is enforced in the momentum equation and an

analogous no-temperature-jump condition is applied in the energy equation. The notion underlying the no-slip/no-

jump condition is that within the fluid there cannot be any finite discontinuities of velocity/temperature. Those

would involve infinite velocity/temperature gradients and so produce infinite viscous stress/heat flux that would

destroy the discontinuity in infinitesimal time. The interaction between a fluid particle and a wall is similar to that

between neighboring fluid particles, and therefore no discontinuities are allowed at the fluid-solid interface either.

In other words, the fluid velocity must be zero relative to the surface and the fluid temperature must equal to that

of the surface. But strictly speaking those two boundary conditions are valid only if the fluid flow adjacent to the

surface is in thermodynamic equilibrium. This requires an infinitely high frequency of collisions between the fluid

and the solid surface. In practice, the no-slip/no-jump condition leads to fairly accurate predictions as long as Kn <

0.001 (for gases). Beyond that, the collision frequency is simply not high enough to ensure equilibrium and a

certain degree of tangential-velocity slip and temperature jump must be allowed. This is a case frequently

encountered in MEMS flows, and we develop the appropriate relations in this section.
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Assuming isothermal conditions prevail, the above slip relation has been rigorously derived by Maxwell (1879)

from considerations of the kinetic theory of dilute, monatomic gases. Gas molecules, modeled as rigid spheres,

continuously strike and reflect from a solid surface, just as they continuously collide with each other. For an

idealized perfectly smooth wall (at the molecular scale), the incident angle exactly equals the reflected angle and the

molecules conserve their tangential momentum and thus exert no shear on the wall. This is termed specular

reflection and results in perfect slip at the wall. For an extremely rough wall, on the other hand, the molecules

reflect at some random angle uncorrelated with their entry angle. This perfectly diffuse reflection results in zero

tangential-momentum for the reflected fluid molecules to be balanced by a finite slip velocity in order to account

for the shear stress transmitted to the wall. A force balance near the wall leads to the following expression for the

slip velocity

  

u u
u

ygas wall
w

      − = L
∂
∂

(11)

where L is the mean free path. The right-hand side can be considered as the first term in an infinite Taylor series,

sufficient if the mean free path is relatively small enough. The equation above states that significant slip occurs

only if the mean velocity of the molecules varies appreciably over a distance of one mean free path. This is the

case, for example, in vacuum applications and/or flow in microdevices. The number of collisions between the fluid

molecules and the solid in those cases is not large enough for even an approximate flow equilibrium to be

established. Furthermore, additional (nonlinear) terms in the Taylor series would be needed as L increases and the

flow is further removed from the equilibrium state.

For real walls some molecules reflect diffusively and some reflect specularly. In other words, a portion of the

momentum of the incident molecules is lost to the wall and a (typically smaller) portion is retained by the reflected

molecules. The tangential-momentum-accommodation coefficient σ v  is defined as the fraction of molecules

reflected diffusively. This coefficient depends on the fluid, the solid and the surface finish, and has been determined

experimentally to be between 0.2—0.8, the lower limit being for exceptionally smooth surfaces while the upper

limit is typical of most practical surfaces. The final expression derived by Maxwell for an isothermal wall reads

  

u u
u

ygas wall
v

v w

       − = −2 σ
σ

∂
∂

L (12)

For σ v = 0 , the slip velocity is unbounded, while for σ v = 1, Equation (12) reverts to (11). Similar arguments

were made for the temperature-jump boundary condition by von Smoluchowski (1898).

7. MOLECULAR-BASED MODELS

In the continuum models discussed thus far, the macroscopic fluid properties are the dependent variables while the

independent variables are the three spatial coordinates and time. The molecular models recognize the fluid as a

myriad of discrete particles: molecules, atoms, ions and electrons. The goal here is to determine the position,

velocity and state of all particles at all times. The molecular approach is either deterministic or probabilistic (refer

to Figure 2). Provided that there is a sufficient number of microscopic particles within the smallest significant

volume of a flow, the macroscopic properties at any location in the flow can then be computed from the discrete-

particle information by a suitable averaging or weighted averaging process. The present section discusses

molecular-based models and their relation to the continuum models previously considered.

The most fundamental of the molecular models is a deterministic one. The motion of the molecules are governed

by the laws of classical mechanics, although, at the expense of greatly complicating the problem, the laws of

quantum mechanics can also be considered in special circumstances. The modern molecular dynamics computer

simulations (MD) have been pioneered by Alder and Wainwright (1957; 1958; 1970) and reviewed by Ciccotti and

Hoover (1986), Allen and Tildesley (1987), Haile (1993) and Koplik and Banavar (1995). The simulation begins

with a set of N molecules in a region of space, each assigned a random velocity corresponding to a Boltzmann

distribution at the temperature of interest. The interaction between the particles is prescribed typically in the form

of a two-body potential energy and the time evolution of the molecular positions is determined by integrating

Newton s equations of motion. Because MD is based on the most basic set of equations, it is valid in principle for

any flow extent and any range of parameters. The method is straightforward in principle but there are two hurdles:

choosing a proper and convenient potential for particular fluid and solid combinations, and the colossal computer

resources required to simulate a reasonable flowfield extent.
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For purists, the former difficulty is a sticky one. There is no totally rational methodology by which a convenient

potential can be chosen. Part of the art of MD is to pick an appropriate potential and validate the simulation results

with experiments or other analytical/computational results. A commonly used potential between two molecules is

the generalized Lennard-Jones 6—12 potential, to be used in the following section and further discussed in the

section following that.

The second difficulty, and by far the most serious limitation of molecular dynamics simulations, is the number of

molecules N that can realistically be modeled on a digital computer. Since the computation of an element of

trajectory for any particular molecule requires consideration of all other molecules as potential collision partners,

the amount of computation required by the MD method is proportional to N2
. Some saving in computer time can

be achieved by cutting off the weak tail of the potential at, say, rc = 2 5. σ , and shifting the potential by a linear

term in r so that the force goes smoothly to zero at the cutoff. As a result, only nearby molecules are treated as

potential collision partners, and the computation time for N molecules no longer scales with N2
.

The state of the art of molecular dynamics simulations in the early 2000s is such that with a few hours of CPU

time, general purpose supercomputers can handle around 100,000 molecules. At enormous expense, the fastest

parallel machine available can simulate around 10 million particles. Because of the extreme diminution of

molecular scales, the above translates into regions of liquid flow of about 0.02 µm (200 Angstroms) in linear size,

over time intervals of around 0.001 µs, enough for continuum behavior to set in for simple molecules. To simulate

1 s of real time for complex molecular interactions, e.g. including vibration modes, reorientation of polymer

molecules, collision of colloidal particles, etc., requires unrealistic CPU time measured in hundreds of years.

MD simulations are highly inefficient for dilute gases where the molecular interactions are infrequent. The

simulations are more suited for dense gases and liquids. Clearly, molecular dynamics simulations are reserved for

situations where the continuum approach or the statistical methods are inadequate to compute from first principles

important flow quantities. Slip boundary conditions for liquid flows in extremely small devices is such a case as

will be discussed in the following section.

An alternative to the deterministic molecular dynamics is the statistical approach where the goal is to compute the

probability of finding a molecule at a particular position and state. If the appropriate conservation equation can be

solved for the probability distribution, important statistical properties such as the mean number, momentum or

energy of the molecules within an element of volume can be computed from a simple weighted averaging. In a

practical problem, it is such average quantities that concern us rather than the detail for every single molecule.

Clearly, however, the accuracy of computing average quantities, via the statistical approach, improves as the

number of molecules in the sampled volume increases. The kinetic theory of dilute gases is well advanced, but that

for dense gases and liquids is much less so due to the extreme complexity of having to include multiple collisions

and intermolecular forces in the theoretical formulation.

In the statistical approach, the fraction of molecules in a given location and state is the sole dependent variable.

The independent variables for monatomic molecules are time, the three spatial coordinates and the three

components of molecular velocity. Those describe a 6-dimensional phase space. For diatomic or polyatomic

molecules, the dimension of phase space is increased by the number of internal degrees of freedom. Orientation

adds an extra dimension for molecules which are not spherically symmetric. Finally, for mixtures of gases, separate

probability distribution functions are required for each species. Clearly, the complexity of the approach increases

dramatically as the dimension of phase space increases. The simplest problems are, for example, those for steady,

one-dimensional flow of a simple monatomic gas.

To simplify the problem we restrict the discussion here to monatomic gases having no internal degrees of freedom.

Furthermore, the fluid is restricted to dilute gases and molecular chaos is assumed. The former restriction requires

the average distance between molecules δ  to be an order of magnitude larger than their diameter σ . That will

almost guarantee that all collisions between molecules are binary collisions, avoiding the complexity of modeling

multiple encounters. The molecular chaos restriction improves the accuracy of computing the macroscopic

quantities from the microscopic information. In essence, the volume over which averages are computed has to have

sufficient number of molecules to reduce statistical errors. It can be shown that computing macroscopic flow
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properties by averaging over a number of molecules will result in statistical fluctuations with a standard deviation

of approximately 0.1% if one million molecules are used and around 3% if one thousand molecules are used. The

molecular chaos limit requires the length-scale L for the averaging process to be at least 100 times the average

distance between molecules (i.e. typical averaging over at least one million molecules).
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Figure 4. Effective limits of different flow models.

Figure 4, adapted from Bird (1994), shows the limits of validity of the dilute gas approximation (δ σ > 7), the

continuum approach (Kn < 0.1, as discussed previously), and the neglect of statistical fluctuations ( L δ > 100 ).

Using a molecular diameter of σ = × −4 10 10
 m as an example, the three limits are conveniently expressed as

functions of the normalized gas density ρ ρo  or number density n no , where the reference densities ρo  and no
are computed at standard conditions. All three limits are straight lines in the log-log plot of L versus ρ ρo , as

depicted in Figure 4. Note the shaded triangular wedge inside which both the Boltzmann and Navier—Stokes

equations are valid. Additionally, the lines describing the three limits very nearly intersect at a single point. As a

consequence, the continuum breakdown limit always lies between the dilute gas limit and the limit for molecular

chaos. As density or characteristic dimension is reduced in a dilute gas, the Navier—Stokes model breaks down

before the level of statistical fluctuations becomes significant. In a dense gas, on the other hand, significant

fluctuations may be present even when the Navier—Stokes model is still valid.

8. MICROPUMPS

There have been several studies of microfabricated pumps. Some of them use non-mechanical effects. The Knudsen
pump uses the thermal-creep effect to move rarefied gases from one chamber to another. Ion-drag is used in
electrohydrodynamic pumps (Bart et al., 1990; Richter et al., 1991; Fuhr et al., 1992); these rely on the electrical
properties of the fluid and are thus not suitable for many applications. Valveless pumping by ultrasound has also
been proposed (Moroney et al., 1991), but produces very little pressure difference.
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Mechanical pumps based on conventional centrifugal or axial turbomachinery will not work at micromachine scales
where the Reynolds numbers are typically small, on the order of 1 or less. Centrifugal forces are negligible and,
furthermore, the Kutta condition through which lift is normally generated is invalid when inertial forces are
vanishingly small. In general there are three ways in which mechanical micropumps can work:

• Positive-displacement pumps. These are mechanical pumps with a membrane or diaphragm actuated in a
reciprocating mode and with unidirectional inlet and outlet valves. They work on the same physical
principle as their larger cousins. Micropumps with piezoelectric actuators have been fabricated (Van Lintel
et al., 1988; Esashi et al., 1989; Smits, 1990). Other actuators, such as thermopneumatic, electrostatic,
electromagnetic or bimetallic, can be used (Pister et al., 1990; Döring et al., 1992; Gabriel et al., 1992).
These exceedingly minute positive-displacement pumps require even smaller valves, seals and mechanisms,
a not-too-trivial micromanufacturing challenge. In addition there are long-term problems associated with
wear or clogging and consequent leaking around valves. The pumping capacity of these pumps is also
limited by the small displacement and frequency involved. Gear pumps are a different kind of positive-
displacement device.

• Continuous, parallel-axis rotary pumps. A screw-type, three-dimensional device for low Reynolds numbers
was proposed by Taylor (1972) for propulsion purposes and shown in his seminal film. It has an axis of
rotation parallel to the flow direction implying that the powering motor must be submerged in the flow,
the flow turned through an angle, or that complicated gearing would be needed.

• Continuous, transverse-axis rotary pumps. This is the class of machines that was recently developed by
Sen et al. (1996). They have shown that a rotating body, asymmetrically placed within a duct, will produce
a net flow due to viscous action. The axis of rotation can be perpendicular to the flow direction and the
cylinder can thus be easily powered from outside a duct. A related viscous-flow pump was designed by
Odell and Kovasznay (1971) for a water channel with density stratification. However, their design operates
at a much higher Reynolds number and is too complicated for microfabrication.

As evidenced from the third item above, it is possible to generate axial fluid motion in open channels through the

rotation of a cylinder in a viscous fluid medium. Odell and Kovasznay (1971) studied a pump based on this principle

at high Reynolds numbers. Sen et al. (1996) carried out an experimental study of a different version of such a

pump. The novel viscous pump, shown schematically in Figure 5, consists simply of a transverse-axis cylindrical

rotor eccentrically placed in a channel, so that the differential viscous resistance between the small and large gaps

causes a net flow along the duct.

ωωωω

2a

U(y) Bulk Flow

H

Figure 5. Schematic of micropump developed by Sen et al. (1996).
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The Reynolds numbers involved in Sen et al.’s work were low ( 0 01 2 102. < ≡ <Re ω υ a ), where ω  is the radian

velocity of the rotor, a  is its radius, and υ  is the fluid kinematic viscosity), typical of microscale devices, but

achieved using a macroscale rotor and a very viscous fluid. The bulk velocities obtained were as high as 10% of the

surface speed of the rotating cylinder. Sen et al. (1996) have also tried cylinders with square and rectangular cross-

sections, but the circular cylinder delivered the best pumping performance.

A finite-element solution for low-Reynolds-number, uniform flow past a rotating cylinder near an impermeable
plane boundary has already been obtained by Liang and Liou (1995). However a detailed two-dimensional
Navier–Stokes simulations of the pump described above have been carried out by Sharatchandra et al. (1997), who
extended the operating range of Re beyond 100. The effects of varying the channel height H and the rotor
eccentricity ε have been studied. It was demonstrated that an optimum plate spacing exists and that the induced flow
increases monotonically with eccentricity; the maximum flowrate being achieved with the rotor in contact with a
channel wall. Both the experimental results of Sen et al. (1996) and the 2-D numerical simulations of Sharatchandra
et al. (1997) have verified that, at Re<10, the pump characteristics are linear and therefore kinematically reversible.
Sharatchandra et al. (1997; 1998a) also investigated the effects of slip flow on the pump performance as well as the
thermal aspects of the viscous device. Wall slip does reduce the traction at the rotor surface and thus lowers the
performance of the pump somewhat. However, the slip effects appear to be significant only for Knudsen numbers
greater than 0.1, which is encouraging from the point of view of microscale applications.

In an actual implementation of the micropump, several practical obstacles need to be considered. Among those are
the larger stiction and seal design associated with rotational motion of microscale devices. Both the rotor and the
channel have a finite, in fact rather small, width. DeCourtye et al. (1998) numerically investigated the viscous
micropump performance as the width of the channel W becomes exceedingly small. The bulk flow generated by the
pump decreased as a result of the additional resistance to the flow caused by the side walls. However, effective
pumping was still observed with extremely narrow channels. Finally, Shartchandra et al. (1998b) used a genetic
algorithm to determine the optimum wall shape to maximize the micropump performance. Their genetic algorithm
uncovered shapes that were nonintuitive but yielded vastly superior pump performance.

Though most of the micropump discussion above is of flow in the steady state, it should be possible to give the
eccentric cylinder a finite number of turns or even a portion of a turn to displace a prescribed minute volume of
fluid. Numerical computations will easily show the order of magnitude of the volume discharged and the errors
induced by acceleration at the beginning of the rotation and deceleration at the end. Such system can be used for
microdosage delivery in medical applications.

9. MICROTURBINES

DeCourtye et al. (1998) have described the possible utilization of the inverse micropump device as a turbine. The
most interesting application of such a microturbine would be as a microsensor for measuring exceedingly small
flowrates on the order of nanoliter/s (i.e., microflow metering for medical and other applications).

The viscous pump described in Section 8 operates best at low Reynolds numbers and should therefore be
kinematically reversible in the creeping-flow regime. A microturbine based on the same principle should, therefore,
lead to a net torque in the presence of a prescribed bulk velocity. The results of three-dimensional numerical
simulations of the envisioned microturbine are summarized in this section. The Reynolds number for the turbine
problem is defined in terms of the bulk velocity, since the rotor surface speed is unknown in this case,
Re ≡ U a ( )2 υ , where U  is the prescribed bulk velocity in the channel.

The turbine characteristics are defined by the relation between the shaft speed and the applied load. A turbine load
results in a moment on the shaft, which at steady state balances the torque due to viscous stresses. At a fixed bulk
velocity, the rotor speed is determined for different loads on the turbine. Again, the turbine characteristics are linear in
the Stokes (creeping) flow regime, but the side walls have weaker, though still adverse, effect on the device
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performance as compared to the pump case. For a given bulk velocity, the rotor speed drops linearly as the external
load on the turbine increases. At large enough loads, the rotor will not spin, and maximum rotation is achieved when
the turbine is subjected to zero load.

At present it is difficult to measure flowrates on the order of 10-12 m3/s (1 nanoliter/s). One possible way is to
directly collect the effluent over time. This is useful for calibration but is not practical for on-line flow
measurement. Another is to use heat transfer from a wire or film to determine the local flowrate as in a thermal
anemometer. Heat transfer from slowly moving fluids is mainly by conduction so that temperature gradients can be
large. This is undesirable for biological and other fluids easily damaged by heat. The viscous mechanism that has
been proposed and verified for pumping herein may be turned around and used for measuring. As demonstrated in this
section, a freely rotating cylinder eccentrically placed in a duct will rotate at a rate proportional to the flowrate due to
a turbine effect. In fact other geometries such as a freely rotating sphere in a cylindrical tube should also behave
similarly. The calibration constant, which depends on system parameters such as geometry and bearing friction,
should be determined computationally to ascertain the practical viability of such a microflow meter. Geometries that
are simplest to fabricate should be explored and studied in detail.

10. MICROBEARINGS

Many of the micromachines use rotating shafts and other moving parts which carry a load and need fluid bearings for
support, most of them operating with air or water as the lubricating fluid. The fluid mechanics of these bearings are
very different compared to that of their larger cousins. Their study falls in the area of microfluid mechanics, an
emerging discipline which has been greatly stimulated by its applications to micromachines and which is the subject
of this paper.

Macroscale journal bearings develop their load-bearing capacity from large pressure differences which are a
consequence of the presence of a viscous fluid, an eccentricity between the shaft and its housing, a large surface speed
of the shaft, and a small clearance to diameter ratio. Several closed-form solutions of the no-slip flow in a
macrobearing have been developed. Wannier (1950) used modified Cartesian coordinates to find an exact solution to
the biharmonic equation governing two-dimensional journal bearings in the no-slip, creeping flow regime. Kamal
(1966) and Ashino and Yoshida (1975) worked in bipolar coordinates; they assumed a general form for the
streamfunction with several constants that were determined using the boundary conditions. Though all these methods
work if there is no slip, they cannot be readily adapted to slip flow. The basic reason is that the flow pattern changes
if there is slip at the walls and the assumed form of the solution is no longer valid.

Microbearings are different in the following aspects: (1) being so small, it is difficult to manufacture them with a
clearance that is much smaller than the diameter of the shaft; (2) because of the small shaft size, its surface speed, at
normal rotational speeds, is also small; and (3) air bearings in particular may be small enough for non-continuum
effects to become important. For these reasons the hydrodynamics of lubrication is very different at microscales. The
lubrication approximation that is normally used is no longer directly applicable and other effects come into play.
From an analytical point of view there are three consequences of the above: fluid inertia is negligible, slip flow may
be important for air and other gases, and relative shaft clearance need not be small.

In a recent study, Maureau et al. (1997) analyzed microbearings represented as an eccentric cylinder rotating in a
stationary housing. The flow Reynolds number is assumed small, the clearance between shaft and housing is not
small relative to the overall bearing dimensions, and there is slip at the walls due to non-equilibrium effects. The
two-dimensional governing equations are written in terms of the streamfunction in bipolar coordinates. Following
the method of Jeffery (1920), Maureau et al. (1997) succeeded in obtaining an exact infinite-series solution of the
Navier–Stokes equations for the specified geometry and flow conditions. In contrast to macrobearings and due to the
large clearance, flow in a microbearing is characterized by the possibility of a recirculation zone which strongly
affects the velocity and pressure fields. For high values of the eccentricity and low slip factors the flow develop a
recirculation region.
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From the infinite-series solution the frictional torque and the load-bearing capacity can be determined. The results
show that both are similarly affected by the eccentricity and the slip factor: they increase with the former and decrease
with the latter. For a given load, there is a corresponding eccentricity which generates a force sufficient to separate
shaft from housing (i.e. sufficient to prevent solid-to-solid contact). As the load changes the rotational center of the
shaft shifts a distance necessary for the forces to balance. It is interesting to note that for a weight that is vertically
downwards, the equilibrium displacement of the center of the shaft is in the horizontal direction. This can lead to
complicated rotor dynamics governed by mechanical inertia, viscous damping and pressure forces. A study of this
dynamics may of interest. Real microbearings have finite shaft lengths, and end walls and other three-dimensional
effects influence the bearing characteristics. Numerical simulations of the three-dimensional problem can readily be
carried out and may also be of interest to the designers of microbearings. Other potential research includes
determination of a criterion for onset of cavitation in liquid bearings. From the results of these studies, information
related to load, rotational speed and geometry can be generated that would be useful for the designer.

Finally, Piekos et al. (1997) have used full Navier–Stokes computations to study the stability of ultra-high-speed,
gas microbearings. They conclude that it is possible—despite significant design constraints—to attain stability for
specific bearings to be used with the MIT microturbomachines (Epstein and Senturia, 1997; Epstein et al., 1997),
which incidentally operate at much higher Reynolds numbers (and rpm) than the
micropumps/microturbines/microbearings considered thus far in this and the previous two sections. According to
Piekos et al. (1997), high-speed bearings are more robust than low-speed ones due to their reduced running
eccentricities and the large loads required to maintain them.

11. SUMMARY

The traditional Navier—Stokes model of fluid flows with no-slip boundary conditions works only for a certain range

of the governing parameters. This model basically demands two conditions. (1) The fluid is a continuum, which is

almost always satisfied as there are usually more than one million molecules in the smallest volume in which

appreciable macroscopic changes take place. This is the molecular chaos restriction. (2) The flow is not too far from

thermodynamic equilibrium, which is satisfied if there is sufficient number of molecular encounters during a time

period small compared to the smallest time-scale for flow changes. During this time period the average molecule

would have moved a distance small compared to the smallest flow length-scale.

For gases, the Knudsen number determines the degree of rarefaction and the applicability of traditional flow models.

As Kn tends to zero, the time- and length-scales of molecular encounters are vanishingly small compared to those

for the flow, and the velocity distribution of each element of the fluid instantaneously adjusts to the equilibrium

thermodynamic state appropriate to the local macroscopic properties as this molecule moves through the flow field.

From the continuum viewpoint, the flow is isentropic and heat conduction and viscous diffusion and dissipation

vanish from the continuum conservation relations, leading to the Euler equations of motion. At small but finite Kn,

the Navier—Stokes equations describe near-equilibrium, continuum flows.

Gaseous flows are often compressible in microdevices even at low Mach numbers. Viscous effects can cause

sufficient pressure drop and density changes for the flow to be treated as compressible. In a long, constant-area

microduct, all Knudsen number regimes may be encountered and the degree of rarefaction increases along the tube.

The pressure drop is nonlinear and the Mach number increases downstream, limited only by choked-flow condition.

Similar deviation and breakdown of the traditional Navier—Stokes equations occur for liquids as well, but there the

situation is more murky. Existing experiments are contradictory. There is no kinetic theory of liquids, and first-

principles prediction methods are scarce. Molecular dynamics simulations can be used, but they are limited to

extremely small flow extents.

On the application front, simple, viscous-based micropumps can be utilized for microdosage delivery, and

microturbines can be used for measuring flowrates in the nanoliter/s range. Both of these can be of value in several

medical applications.

The material presented herein is but a very brief summary of a very broad area of research. The reader is referred to

the books by Gad-el-Hak (2002) and Karniadakis and Beskok (2002) to fill much of the missing details.
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