
Theory of electronic states and optical absorption
in carbon nanotubes

Tsuneya ANDO

Department of Physics, Tokyo Institute of Technology
2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

ABSTRACT

A brief review is given of electronic and optical properties of carbon nanotubes mainly from a theoretical point
of view. The topics cover an effective-mass description of electronic states, Aharonov-Bohm effects, and optical
absorption including interaction effects on the band structure gap and excitonic effects.
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1. INTRODUCTION

Carbon nanotubes (CNs) are quasi-one-dimensional materials made of sp2-hybridized carbon networks1 and have
been a subject of an extensive study. In particular, the electronic structure of a single CN has been studied
theoretically, which predicted that CN becomes either metallic or semiconducting depending on its chiral vector,
i.e., boundary conditions in the circumference direction.2–11 These predictions have been confirmed by Raman
experiments12 and direct measurements of local density of states by scanning tunneling spectroscopy.13–15 The
purpose of this paper is to give a brief review of recent theoretical study on electronic and optical properties of
carbon nanotubes.

In understanding electronic properties of nanotubes, a k·p method or an effective-mass approximation11 is
quite poweful. It has been used successfully in the study of wide varieties of electronic properties of CN. Some of
such examples are magnetic properties16 including the Aharonov-Bohm effect on the band gap, optical absorption
spectra,17 exciton effects,18 lattice instabilities in the absence19, 20 and presence of a magnetic field,21 magnetic
properties of ensembles of nanotubes,22 effects of spin-orbit interaction,23 effects of lattice vacancies,24, 25 and
electronic properties of nanotube caps.26 Long wavelength phonons and electron-phonon scattering have also
been studied.27 In this paper, we shall discuss electronic states and optical spectra obtained mainly in this k·p
scheme.

2. ENERGY BANDS

2.1. Neutrino on cylinder surface

Figure 1 shows the lattice structure and the first Brillouin zone of a two-dimensional (2D) graphite together with
the coordinate systems. A unit cell contains two carbon atoms denoted by A and B. A nanotube is specified
by a chiral vector L = naa+nbb with integer na and nb and basis vectors a and b (|a|= |b|= a = 2.46 Å). In
the coordinate system fixed onto the graphite sheet, we have a=(a, 0) and b=(−a/2,

√
3a/2). For convenience

we introduce another coordinate system where the x direction is along the circumference L and the y direction
is along the axis of CN. The direction of L is denoted by the chiral angle η. It should be noted that there is
another convention of choosing the basis vectors a1 and a2 instead of a and b such that a1 =a+b and a2 =b.

A graphite sheet is a zero-gap semiconductor in the sense that the conduction and valence bands consisting of
π states cross at K and K’ points of the Brillouin zone, whose wave vectors are given by K=(2π/a)(1/3, 1/

√
3) and

K′=(2π/a)(2/3, 0).28, 29 Electronic states near a K point of 2D graphite are described by the k·p equation:11, 30

γ(�σ · k̂)F(r)=εF(r), F(r)=
(

FA(r)
FB(r)

)
, (1)
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Figure 1. Left: Lattice structure of two-dimensional graphite sheet. η is the chiral angle. The coordinates are chosen in
such a way that x is along the circumference of a nanotube and y is along the axis. Right-top: The first Brillouin zone
and K and K’ points. Right-bottom: The coordinates for a nanotube.

where γ is the band parameter, k̂ = (k̂x, k̂y) is a wave-vector operator, ε is the energy, and σx and σy are the
Pauli spin matrices. Equation (1) has the form of Weyl’s equation for neutrinos, i.e., relativistic Dirac electrons
with vanishing rest mass. Figure 2 shows the energy dispersion and the density of states schematically.

The electronic states in a nanotube can be obtained by imposing the periodic boundary condition in the
circumference direction Ψ(r+L)=Ψ(r) except for extremely thin CNs. The Bloch functions at a K point change
their phase by exp(iK ·L) = exp(2πiν/3), where ν is an integer defined by na +nb = 3M +ν with integer M
and can take 0 and ±1. Because Ψ(r) is written as a product of the Bloch function and the envelope function,
i.e., the neutrino wave function, this phase change should be canceled by that of the envelope functions and
the boundary conditions become F(r+L)=F(r) exp(−2πiν/3). The extra phase can be regarded as a fictitious
Aharonov-Bohm flux passing through the cross section of CN.

Energy levels in CN for the K point are obtained by putting kx =κν(n) with κν(n)= (2π/L)[n−(ν/3)] and
ky =k in the above k·p equation as ε

(±)
ν (n, k)=±γ

√
κν(n)2+k2,11 where L= |L|, n is an integer, and the upper

(+) and lower (−) signs represent the conduction and valence bands, respectively. The Hamiltonian and the
boundary condition for the K’ point are obtained by replacing k̂y by −k̂y and ν by −ν. This shows that CN
becomes metallic for ν = 0 and semiconducting with gap Eg = 4πγ/3L for ν =±1. Figure 3 shows a schematic
illustration of the bands for ν =0 and +1 in the vicinity of the K point.
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Figure 2. The energy dispersion and density of states in the vicinity of K and K’ points obtained in a k·p scheme
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Figure 3. Energy bands of a nanotube obtained in the effective-mass approximation for ν =0 (left) and ν =+1 (right)

2.2. Aharonov-Bohm effect

In the presence of a magnetic flux φ passing through the cross section of CN, the boundary condition changes
into Ψ(r+L) = Ψ(r) exp(2πiϕ) with ϕ = φ/φ0, where φ0 = ch/e is the magnetic flux quantum. Consequently,
κν(n) is replaced by κνϕ(n) with

κνϕ(n) =
2π

L

(
n+ϕ− ν

3

)
. (2)

The corresponding result for the K’ point is again obtained by the replacement ν→−ν. The band gap exhibits
an oscillation between 0 and 2πγ/L with period φ0 as is shown in Fig. 4.11, 31 This giant Aharonov-Bohm (AB)
effect on the band gap is a unique property of CN’s. The AB effect appears also in a tunneling conductance
across a finite-length CN.32

This AB effect was shown to be responsible for observed oscillation of the resistance in multi-wall nanotubes.33

Quite recently, splitting of the band gap in semiconducting tubes in the presence of magnetic flux was observed
directly in optical absorption spectra of single-wall CN’s.34

2.3. Topological singularity and absence of backward scattering

The wave function in the 2D graphite is written explicitly as

Fsk =
1√
2

(
eiθ(k)

s

)
exp(ik·r), (3)

where θ(k) is the direction angle of k and s = +1 and −1 for the conduction and valence band, respectively.
This wave function acquires Berry’s phase −π when the wave vector k is rotated around the origin k = 0,
although it looks continuous as a function of k.35, 36 In fact, when k is rotated once in the anticlockwise direction
adiabatically as a function of time t for a time interval 0 < t < T with k(T ) = k(0), the wavefunction Fsk is
changed into Fsk exp(−iψ), where ψ is Berry’s phase given by

ψ = −i

∫ T

0

dt
〈
sk(t)

∣∣∣ d

dt

∣∣∣sk(t)
〉

= −π. (4)

This is equivalent to the well-known signature change of the spinor wave function or a spin rotation operator
under a 2π rotation.

It should be noted that ψ=−π when the closed contour encircles the origin k=0 but ψ=0 when the contour
does not contain k=0. Further, the wave function at k=0 depends on the direction of k and its “spin” direction
is undefined. These facts show the presence of a topological singularity at k= 0. The nontrivial Berry’s phase
leads to the unique property of a metallic carbon nanotube that there exists no backscattering and the tube is
a perfect conductor even in the presence of scatterers.35, 37 In fact, it has been proved that the Born series for
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Figure 4. A schematic illustration of magnetic flux passing through a tube cross section (left) and energy gap versus the
flux for metallic (ν =0) and semiconducting (ν =±1) CN (right).

backscattering vanish identically and the conductance calculated exactly for finite-length nanotubes containing
many impurities has shown to be given by 2e2/πh̄ independent of length.37 The absence of backscattering has
been confirmed also by numerical calculations in a tight binding model.38

Backscattering corresponds to a rotation of the k direction by ±π. In the absence of a magnetic field, there
exists a time reversal process corresponding to each backscattering. This process corresponds to a rotation by
±π in the opposite direction. The scattering amplitudes of these two processes are same in the absolute value
but have opposite signatures because of Berry’s phase. As a result, the backscattering amplitude cancels out
completely. In semiconducting nanotubes, on the other hand, backscattering appears because the symmetry is
destroyed by a nonzero Aharonov-Bohm magnetic flux. The singularity causes also the appearance of a perfectly
conducting channel and makes the conductivity infinite even in the presence of several bands at the Fermi level.39

It gives rise to various zero-mode anomalies in transport properties of 2D graphite.40, 41

3. OPTICAL ABSORPTION, BAND GAPS, AND EXCITONS

3.1. Polarization and selection rules

The optical absorption is described by a dynamical conductivity obtained in a linear response theory.17 We first
expand electric field Eα(θ, ω) and induced current density jα(θ, ω) into a Fourier series:

Eα(θ, ω) =
∑

l

El
α(ω) exp(ilθ−iωt), jα(θ, ω) =

∑
l

jl
α(ω) exp(ilθ−iωt), (5)

with α=x, y and θ =2πx/L. It is quite straightforward to show that the induced current has the same Fourier
component as that of the electric field, i.e., jl

α(ω)=σl
αα(ω)El

α(ω). The dynamical conductivity is given by

σl
αα(ω)=

∑
nk

|(n,k,+|jl
α|n+l,k,−)|2

iLA[ε(+)
n (k)−ε

(−)
n+l(k)]

f [ε(−)
n+l(k)](1−f [ε(+)

n (k)])2h̄2ω

[ε(+)
n (k)−ε

(−)
n+l(k)]2−(h̄ω)2−ih̄2ω/τ

, (6)

where A is the length of the nanotube, the current-density operator is given by jl
α = −(eγ/h̄)σαe−ilθ, a phe-

nomenological relaxation time τ has been introduced, and f(ε) is the Fermi distribution function.

When external electric field D is polarized along the CN axis, the Fourier components of a total field are
El

y = Dyδl,0 and the absorption is proportional to Reσyy(ω) with σyy(ω) = σl=0
yy (ω). It can be seen from Eq.

(6) that transitions occur between valence and conduction bands with the same band index n. At a band edge
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Figure 5. The band structures of a metallic and semiconducting CN. The allowed optical transitions for the parallel
polarization are denoted by arrows in the upper figure and those for the perpendicular polarization in the lower figure.

k =0, in particular, the envelope function is given by an eigenvector of a Pauli matrix σx. Because the current
operator jy is proportional to σy , the transitions at their edges are all allowed.

The situation becomes much more complicated when an external electric field is polarized in the direction
perpendicular to the CN axis. In this case, effects of an electric field induced by the polarization of nanotubes
should be considered. This depolarization effect can be calculated also in the k·p scheme.

Suppose an external electric field Dl
xeilθ−iωt is applied in the direction normal to the tube axis and let jl

x

be the induced current. Then, the corresponding induced charge density localized on the cylindrical surface
is calculated as ρl = (2π/L)(l/ω)jl

x with the use of the equation of continuity. This charge leads to potential
φl = (L/κ|l|)ρl or electric field El

x = −i(2π/κL)lφl. The static dielectric constant κ describes polarization of
states (σ and π bands) except those lying in the vicinity of the Fermi level. It is expected to be in the range
1 < κ < 10, but its exact value is not known. Thus, the total electric field becomes El

x = Dl−i|l|(4π2/κLω)jl
x,

which leads with the use of jl
x =σl

xxEl
x to jl

x = σ̃l
xxDl

x, where

σ̃l
xx = σl

xx

(
1 + i|l| 4π2

κLω
σl

xx

)−1

. (7)

For the light-polarization perpendicular to the tube axis, its field is written as D=(Dx sin θ, 0). The absorp-
tion in a unit area is then proportional to Re(jxE∗

x)∝Reσ̃xx(ω) with σ̃xx = σ̃l=1
xx = σ̃l=−1

xx . According to Eq. (6)
the absorption occurs between the valence band with index n and the conduction bands with n±1.

Let us consider a spectral edge corresponding to k=0, for which the eigenstates are those of a Pauli matrix
σx. Because the current operator is proportional to σx, transitions between valence- and conduction-band states
become allowed only when κνϕ(n) and κνϕ(n±1) have a sign opposite to each other. This leads to the conclusion
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in a metallic CN, for example, that transitions from n=0 to n=−1 and from n=−1 to n=0 are allowed as shown
in Fig. 5. When the depolarization effect is included, however, these peaks disappear almost completely because
most of their intensity is transferred to interband plasmons with much higher energy.17 Therefore, interband
optical transitions among valence and conduction bands near the Fermi level is observable only for polarization
parallel to the tube axis.

3.2. Band gap renormalization and excitons

One important problem is a many-body effect on the band structure and optical absorption spectrum. In fact,
band gaps are likely to be influenced strongly by electron-electron interactions. Further, the exciton binding
energy becomes infinite in the limit of an ideal one-dimensional electron-hole system.42, 43 This means that the
exciton effect can be quite important and modify the absorption spectra drastically. The band-gap renormal-
ization and optical spectra with exciton effects have been calculated in the conventional screened Hartree-Fock
approximation within a k·p scheme.18

The strength of the Coulomb interaction is specified by (e2/κL)/(2πγ/L), which turns out to be independent
of the circumference length L. In the k·p scheme, therefore, all physical quantities become almost universal if the
length is scaled by L and the energy by 2πγ/L. This parameter is estimated as (e2/κL)(2πγ/L)−1=0.3545×κ−1

for γ =6.46 eV·Å, which corresponds to γ =
√

3a|γ0|/2 with γ0 =−3.03 eV and a=2.46 Å.

Figure 6 shows some examples of calculated exciton energy levels for a semiconducting CN (ν =1) versus the
strength of the Coulomb interaction in the left hand side. With the increase of the interaction, the number of
exciton bound states increases and their energy levels are shifted to the higher energy side in spite of the fact
that their binding energy increases. The reason is in the considerable enhancement of the band gap due to the
Coulomb interaction. It is interesting to notice that the energy of the lowest excitonic state varies very little as
a function of the strength of the Coulomb interaction.

Figure 6 shows calculated absorption spectra in a semiconducting CN for (e2/κL)/(2πγ/L)=0.1 in the right
hand side. The energy levels of excitons are denoted by vertical straight lines. The considerable optical intensity
is transferred to the lowest exciton bound states. For a sufficiently larger strength of the Coulomb interaction,
transitions to exciton excited states become appreciable.
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Figure 6. Interband excitation spectra calculated in a screened Hartree-Fock approximation (left) and examples of
interband optical absorption spectra in the presence of electron-electron interaction (right).
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In addition to excitons associated with the highest valence and the lowest conduction bands (n=0), exciton
effects are important for transitions to excited bands. In fact, the exciton binding energy and the intensity
transfer is larger for the transition to the higher conduction band (n = 1) than those with n = 0. This arises
because the effective mass along the axis direction for the conduction and valence bands with n=1 is twice as
large as that of the lowest conduction band and the highest valence band with n=0.

It turned out that interaction effects on the band gap are almost independent of n = 0 and n = 1 and the
exciton energy is almost as large as the band-gap renormalization for the bands with larger optical gap n=1. As
a result, the absorption peak stays almost at the corresponding band gap in the absence of interaction for n=1
and exciton effects independent of the interaction strength and the energy difference between the absorption
peaks for n=0 and n=1 becomes smaller than that in the absence of interactions.

Optical absorption spectra of thin film samples of single-wall nanotubes were observed quite recently and
analyzed by assuming a distribution of their chirality and diameter.44 Careful comparison of the observed spec-
trum with calculated in a simple tight-binding model suggested the importance of excitonic effects.45 In fact,
comparing the observed spectrum with the calculated one in the fundamental absorption region, the observed
absorption band for n= 0 lies at an energy higher than half of the band for n =1. The results can roughly be
explained by the theoretical result for (e2/κL)/(2πγ/L)∼0.05. This strongly suggests that the exciton effect to-
gether with the band-gap renormalization plays an important role in the optical transition near the fundamental
absorption edge in semiconducting nanotubes.

3.3. Interaction effects on band structure

In the screened Hartree-Fock approximation discussed above, a dielectric function appearing in the self-energy is
replaced by the static one and therefore dynamical effects such as coupling with charge density excitations are not
taken into consideration explicitly. Quite recently, calculations were performed in a full dynamical random-phase
approximation (RPA),46, 47 often called the GW approximation,48

In RPA, the Coulomb interaction appearing in the self-energy diagram Σns(k, ε) is screened by the dynamical
dielectric function εn−m(q, ω). The self-energy diverges logarithmically and therefore a cutoff function g0(ε) =
εαc

c /(|ε|αc +εαc
c ) is introduced so as to exclude contributions from states far away from the Fermi level. The

cutoff energy εc is of the order of the width of the π bands in 2D graphite.

The single-particle energy Ens(k) is calculated by Ens(k)=ε
(s)
n (k)+Σns(k, ε

(s)
n (k)) with s = ±. Originally, it

is determined by the equation obtained from the above by the replacement of Σns(k, εs
n(k)) by Σns(k,Ens(k)).

However, the present procedure is known to give more accurate results if the self-energy is calculated only in the
lowest order.49, 50 Using the single-particle energy, we evaluate the band gap ∆n which is defined by the energy
difference at k = 0 between conduction and valence bands of the same index n as ∆n = En+(0)−En−(0). The
cutoff parameters are chosen as εc/(2πγ/L)=5 and αc =4.

Figure 7 gives the gap of the first parabolic band in a metallic CN and the first and second band gap for a
semiconducting CN. In the regime of very weak interaction (e2/κL)/(2πγ/L)<0.05, the band gap increases with
the interaction strength in both metallic and semiconducting CN’s. With the further increase of the interaction,
however, the gap in a metallic CN starts to decease after taking a maximum at around (e2/κL)/(2πγ/L)≈0.15,
while that in a semiconducting CN continues to increase.

In the weak interaction regime (e2/κL)/(2πγ/L)<0.2, dynamical effects on the band gap are small and the
static RPA works well. When the interaction is stronger, the difference between the dynamical and static RPA
becomes larger in a metallic CN than in a semiconducting CN. The shift in the gaps of a semiconducting CN
is nearly independent of the band. This shows that the interaction effects cannot be absorbed into a simple
renormalization of the band parameter γ.

Figure 8 shows the band gaps for a semiconducting CN for different cutoffs, εc/(2πγ/L)= 2.5, 5.0, and 10.
The band gap scaled by 2πγ/L increases logarithmically with the increase of the cutoff energy. This logarithmic
cutoff dependence means that the band-gap enhancement increases slightly (logarithmically) with the increase
of the CN diameter if being scaled by 2πγ/L. Unfortunately, experimental measurements of band gaps have
not been accurate enough to make detailed comparison possible so far. Note that such logarithmic dependence
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Figure 7. (Left) Calculated gap of a parabolic bands (n = ±1) in a metallic CN (M) and first and second gaps of a
semiconducting CN (S) versus the effective strength of the Coulomb interaction.

Figure 8. (Right) The cutoff-energy dependence of the gap in a semiconducting nanotube. The gap increases logarith-
mically with the thickness after being scaled by 2πγ/L.

on the diameter cannot be reproduced in the conventional local-density approximation used in first-principles
calculations.

If we employ the same scheme, we can calculate the self-energy for the linear bands with n = 0 in metallic
CN’s, giving a gapless linear band with a renormalized velocity. In fact, although each term of perturbation
expansion of the self-energy is known to exhibit a divergence, the RPA self-energy itself does not diverge because
of the cancellation of a divergent polarization function. This result is in clear contradiction with the fact that only
a charge-density and a spin-density excitation can exist and there are no well-defined quasi-particle excitations
in systems with a linear dispersion,51, 52 leading to the breakdown of the Fermi liquid picture.

This apparent inconsistency arises from the way of determining the quasi-particle energy from the self-energy.
Even in RPA, the spectral function (the imaginary part of the Green’s function) exhibits double sharp peaks in
a system with only metallic linear bands as shown in Fig. 9. This peak splitting, into charge-density and spin-
density excitations presumably, is a result of the divergent behavior of the polarization function and qualitatively
in agreement with that of the spectral function for a Tomonaga-Luttinger liquid reported in refs. 53 and 54. For
the parabolic bands both in semiconducting and metallic CN’s, no singular behavior appears in the polarization
function and therefore quasi-particle states are expected to give a good picture of their low-energy excitations.

4. SUMMARY AND CONCLUSION

In summary, an electron in a nanotube is a massless neutrino on a cylinder surface with a fictitious Aharonov-
Bohm flux determined by its structure. A nanotube becomes a metal or a semiconductor, depending on whether
the amount of the flux vanishes or not. In the presence of an external magnetic flux, the band structure changes
due to a large Aharonov-Bohm effect. One important feature of the neutrino equation is the presence of a
topological singularity at the origin of the wave-vector space, leading to the absence of backward scattering and
the presence of a perfectly conducting channel even in the presence of scatterers.
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Optical absorptions are appreciable only for polarization parallel to the axis. Because of the dimensionality of
a nanotube, excitonic effects are expected to play important roles in optical spectra. Explicit calculations of the
band structure with the inclusion of effects of electron-electron interactions in several approximation schemes
demonstrate a considerable band-gap enhancement depending on the strength of a dimensionless interaction
parameter. Calculations of optical excitation spectra show that excitonic effects can also be important.
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