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ABSTRACT 
 
This paper addresses practical considerations for the implementation of algorithms developed to increase the image 
resolution from a video sequence by using techniques known in the specialized literature as super-resolution (SR). In 
order to achieve a low-cost implementation, the algorithms have been mapped onto a previously developed video 
encoder architecture. By re-using such architecture and performing only slight modifications on it, the need for specific, 
and usually high-cost, SR hardware is avoided. This modified encoder can be used either in native compression mode or 
in SR mode, where SR can be used to increase the image resolution over the sensor limits or as a smart way to perform 
electronic zoom, avoiding the use of high-power demanding mechanical parts. Two SR algorithms are presented and 
compared in terms of execution time, memory usage and quality. These algorithms features are analyzed from a real-time 
implementation perspective. The first algorithm follows an iterative scheme while the second one is a modified version 
where the iterative behavioural has been broken. The video encoder together with the new SR features constitutes an IP 
block inside Philips Research, upon which several System on Chip (SoC) platforms are being developed. 
 
Keywords: Super-Resolution, Multimedia Architectures, Image Reconstruction, Hardware/Software Co-design, Video 

Compressors. 

1. INTRODUCTION 
 
There are multiple scenarios where it is important to increase the resolution of the pictures acquired by an imaging 
system: from medicine to astronomy, going through domestic pictures or surveillance systems among others.  There are 
two straightforward ways to increase sensor resolution. The first one is based on increasing the number of light-sensors 
and therefore the area of the overall sensor, but that results in an important cost increase. The second one is focused on 
preserving the overall sensor area by decreasing the size of the light-sensors. Although this size reduction increases the 
number of light-sensors, the size of the active pixel area where the light integration is performed becomes decreased. As 
fewer amounts of light reach the sensor it will be more sensitive to the shot noise. However, it has been estimated that 
the minimum photo-sensors size is around 50µm2 [1], a limit that has already been reached by the CCD technology. A 
smart solution to this problem is to increase the resolution using algorithms such as the super-resolution (SR) ones, 
wherein high-resolution images are obtained using low-resolution sensors at lower costs. Super-resolution can be defined 
as a technique that estimates a high-resolution sequence by using multiple low-resolution observations of the scene. In 
order to obtain significant improvements in the resulting SR image, some amount of aliasing in the input low-resolution 
images must be provided. In other words, if all the high frequency information has been removed from the input images 
(for instance by using lenses with optical low-pass filter effect), it will be impossible to recover the edge details 
contained in the high frequencies. Some of the most important applications of SR are: 

(i) Still image improvement [1, 2], where several images from the same scene are obtained and used to form a 
higher resolution image.  

(ii) Analogical video frame improvement [3, 4]. Due to the low quality of analogical video frames, they are not 
normally suitable for performing directly a printed copy as in the digital photography case. The quality of 
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the image is increased using several consecutive frames combined in a higher resolution image by using SR 
algorithms. 

(iii) Surveillance systems, where SR is used to increase the quality in video surveillance systems, making it 
possible to use such recorded sequences as forensic digital video, and even to be admitted as evidence in the 
courts of law. SR can also improve night vision systems when images have been acquired with infrared 
sensors [5] and can help in the face recognition process for security purposes [6]. 

(iv) Text extraction process from image sequences [7] is highly improved if the Regions Of Interest (ROI) 
containing the text are first super-resolved. 

(v) Medical image acquisition [8]. Many medical types of equipment as the Computer Aided Tomography 
(CAT), the Magnetic Resonance Images (MRI) or the echography or ultra-sound images, allow the 
acquisition of several images, which can be combined, thus obtaining a higher resolution image. 

(vi) Improvement of images from compressed video [9, 10]. For example, in [11] the image high frequency 
information recovery, lost in the compression process, is addressed. These missing data is incorporated from 
transform-domain quantization information obtained from the compressed video bit stream. An excellent 
survey of SR algorithms from compressed video can be found in [12]. 

(vii) Improvement of radar images [13, 14]. In this case SR allows a clearer observation of details sometimes 
critical for air or maritime security [15] or for land observations [16, 17].  

(viii) Quality improvement of images obtained from the outer space. An example is exposed in [2] with images 
taken by the Viking satellite.  

(ix) Image Based Rendering (IBR) of 3D objects use cameras to obtain rich models directly from the real-world 
data [18]. SR is used to produce high-resolution scene texture from an omnidirectional image sequence [19]. 

 
This paper addresses low-cost solutions for the implementation of SR algorithms on SOC (System-On-Chip) platforms in 
order to achieve high-quality image improvements. Low-cost constrains are accomplished in the sense that SR is 
performed without developing a specific hardware, but re-using a video encoder. This encoder can be used either in 
compression mode or in SR mode as an added value to the encoder. Due to this reason, SR is used in the video encoder 
as a smart way to perform image zooming of regions of interest (ROI) without using mechanical parts to move the 
lenses, thus saving power consumption. It is important to remark that although the SR algorithms presented in this paper 
have been implemented on an encoder architecture developed by Philips Research, the same SR algorithms can be easily 
adapted to other hybrid video encoder platforms. 
The SR approaches that will be depicted consists of gathering information from a set of images in the spatial-temporal 
domain in order to integrate all the information (when possible) in a new quality-improved super-resolved image. This 
set is composed of several images, where small spatial shifts have been applied from one image to the other. This can be 
achieved by recording a video sequence at high frame rates with a hand-held camera.  
The rest of the paper is organized as follows. Firstly, the most relevant publications directly related with this work are 
reviewed, followed by a brief description of the hybrid video compression architecture where the developed SR 
algorithms have been mapped on. In the second section the ISR algorithms is described while in Section 3 the 
experimental setup to evaluate the quality of the iterative and non-iterative algorithms is presented, and based on it, a set 
of experiments are developed in Section 4 in order to assess the correct behavioural of the ISR algorithm, showing as a 
result an important increase in the super-resolved output images. As far as an iterative behavioural seriously jeopardize a 
real-time implementation, in Section 5 a novel SR algorithm is described, where the previous iterative feature has been 
removed. In this same section the adjustments carried out in the architecture in order to obtain a feasible implementation 
are explained, while Section 6 shows the results achieved with this non-iterative algorithm. In Section 7 are compared 
the advantages and drawbacks for the described ISR and NISR algorithms. Finally, in Section 8 the most remarkable 
results of this work are discussed. 

1.1. Super-Resolution Algorithms 
The possibility of reconstructing a super-resolved image from a set of images was initially proposed by Huang and Tsay 
in 1984 [20], although the general sampling theorems previously formulated by Yen in 1956 [21] and Papoulis in 1977 
[22] showed exactly the same concept (from a theoretical point of view). When Huang and Tsay originally proposed the 
idea of the SR reconstruction, they faced the problem from the frequency domain to demonstrate the possibility of 
reconstructing an image with improved resolution from several low-resolution undersampled images without noise and 
from the same scene, based on the spatial aliasing effect. They assume a purely translational model and solve the dual 
problem of registration and restoration (the registration implies estimating the relative shifts among the observations and 
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the restoration implies the estimation of samples on a uniform grid with a higher sampling rate). The restoration stage is 
actually an interpolation problem dealing with non-uniform sampling. From the Huang and Tsay proposal until the 
present days, several research groups have developed different algorithms for this task of reconstruction, obtained from 
different strategies or analysis of the problem.  
The great advances experimented by computer technology in the last years has led onto a renewed and growing interest 
in the theory of image restoration. The main approaches are based on non-traditional treatment of the classical restoration 
problem, oriented to new restoration problems of second generation, and the use of algorithms that are more complex 
and exhibit a higher computational cost. Based on the resulting image, these new second-generation algorithms can be 
classified in: problems of an image restoration [20, 23, 24], restoration of an image sequence [25, 26], and reconstruction 
of an imaged improved with SR [27, 28]. This paper is positioned on the last mentioned approach, both for the 
reconstruction of static image as for the reconstruction of images sequences with SR improvements.  
The classical theory of image restoration from blurred images and with noise has caught the attention of many researches 
over the last three decades. In the scientific literature, several algorithms have been proposed for this classical problem 
and to the problems related with it, contributing to the construction of a unified theory that comprises many of the 
existing restorations methods [29]. In the image restoration theory, mainly three different approaches exist that are 
widely used in order to obtain reliable restoration algorithms: Maximum Likelihood Estimators (MLE) [50, 51, 52], 
Maximum A-Posteriori (MAP) probability, [29, 30, 31] and the Projection Onto Convex Sets (POCS) [30]. 
An alternative classification [32] based on the processing approach can be made, where the work on SR can be divided 
into two main categories: reconstruction-based methods [27, 33] and learning-based methods [34, 35]. The theoretical 
foundations for reconstruction methods are non-uniform sampling theorems, while learning-based methods employ 
generative models that are learned from samples. The goal of the former is to reconstruct the original (super-sampled) 
signal while that of the latter is to create the signal based on learned generative models. In contrast with reconstruction 
methods, learning-based SR methods assume that corresponding low-resolution and high-resolution training image pairs 
are available. The majority of SR algorithms belong to the signal reconstruction paradigm that formulates the problem as 
a signal reconstruction problem from multiple samples. Among this category are frequency-based methods, Bayesian 
methods, Back-Projection (BP) methods, Projection Onto Convex Set (POCS) methods, and hybrid methods. From this 
second classification, this paper is positioned in the reconstruction-based methods, as it seeks to reconstruct the original 
image without making any assumption about the generative models and assuming that only the low-resolution images are 
available.   
The problem of a specific image reconstruction from a set of lower quality images with some relative movement among 
them is known as the static SR problem. On the other side, it is the dynamic SR problem, where the objective is to obtain 
a higher quality sequence from another lower resolution sequence, seeking that both sequences have the same length. 
These two problems also can be denominated as the SR problem for static images and the SR problem for video, 
respectively [36]. The work presented in this paper only deals with static SR as the output sequences do not have the 
same length than the input low-resolution sequences. 
Most of the proposed methods mentioned above lack feasible implementations, leaving aside the more suitable process 
architectures and the required performances in terms of speed, precision or costs. Moreover, all the previous SR 
approaches demand a huge amount of computation, and for this reason, in general they are not suitable for real time 
applications. Until now, none of them have been implemented over a feasible hardware architecture. This paper 
addressed this fact and offers a low-cost solution. The ISR algorithm exposed in this paper is a modified version of [37], 
adapted to be executed inside a real video encoder, i.e. restricting the operators needed to those that can be found in such 
kind of platforms. New operator blocks to perform the SR process have being implemented inside the existing co-
processors in order to minimize the impact on the overall architecture, as it will be demonstrated in next sections. 

1.2. The hybrid video encoder platform 
All the algorithms described in this paper have been implemented in an architecture developed by Philips Research. This 
architecture is shown in (Fig. 1). The software tasks are executed on an ARM processor and the hardware tasks are 
executed on the Very Long Instruction Word (VLIW) processors (namely, pixel processor, motion estimator processor, 
texture processor and stream processor). The pixel processor (PP) communicates with the pixel-domain (image sensor or 
display) and performs input lines to macro-block (MB) conversions. The motion estimator processor (MEP) evaluates a 
set of candidate vectors received from software and selects the best vector for full, half and quarter pixel refinements. 
The output of the MEP consists of motion vectors, sum-of-absolute-difference (SAD) values, and texture metrics. This 
information is processed by the general purpose embedded microprocessor ARM to determine the encoding approach for 
the current MB. 
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The texture processor (TP) performs the MBs encoding and stores the decoded MBs in the loop memory. The output of 
the TP consists of variable length encode (VLE) codes for the discrete cosine transform (DCT) coefficients of the current 
MB. Finally, the stream processor (SP) packs the VLE coded coefficients and headers generated by the TP and the ARM 
processor respectively. 
Communications among modules are performed through two buses, a control bus and a data bus, each of them controlled 
by a Bus Control Unit (BCU). Both buses can be directly communicated through a bridge. Images that will be processed 
by the ISR and the NISR algorithms come from the data bus. 
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Figure 1: Architecture for the Multi-Standard Video/Image Codec developed by Philips Research. 

2. ITERATIVE SUPER-RESOLUTION ALGORITHM 
 
The implemented ISR algorithm is shown in (Fig.2). All memories are eight bits wide, except HR_A, which must be nine 
bits wide. This memory must be wider because it must store arithmetical results that can overflow 8 bits, especially in the 
beginning of the iterations. LR_I[] are the low-resolution input frames, HR_B is the SR image result, LR_B is the low-
resolution version of  HR_B; HR_T is a temporal high-resolution image to avoid overlapping while performing the 
motion compensation and due to the pipeline of the video-encoder [39]; HR_A accumulates the average error that will be 
used as an update for the SR image; HR_S stores the error between the SR image (HR_B) shifted to the input frame 
position and the upsample input image, and finally, MV_ref2fr[] and MV_fr2ref[] are the motion vectors memories to 
store the motion between the reference and the input frames and vice versa. The number of frames to be combined to 
create a higher resolution image is ‘nr_frames’ while ‘nr_iterations’ stands for the maximum number of pre-established 
iterations. The algorithm can be split up in the following main steps [38]:  
1. Initially, the first low-resolution image is stored in LR_B, used as the low-resolution version of the super-resolved 

image that will be stored in HR_B. The super-resolved image HR_B is initialized with an upsample version of the 
first low-resolution image. 

2. The iterative process starts obtaining LR_B as a downsampled version of the super-resolved image in HR_B, except 
for the first iteration, where this assignation has been already made. 

3. The motion vectors from the frame being processed to the reference frame are set to zero for frame zero as the frame 
zero is now the reference.  

4. The remainder motion vectors are computed between the other low-resolution input frames and the low-resolution 
version of the super-resolved image: LR_B (the reference). Instead of computing again the inverse motion, i.e. the 
motion between the reference and every low-resolution frame, the approximation of considering this motion as the 
inverse of the previous computed motion is made. Firstly, a great amount of computation is save due to that 
approximation and secondly, as far as the motion is computed as a set of translational motion vectors in horizontal 
and vertical directions, the model is mathematically consistent.   

5. As the motion vectors are computed in the low-resolution grid, they must be properly scaled to be used in the high-
resolution grid. In this case only single shift of one bit to the left is needed. 

6. The accumulative image HR_A is set to zero prior to the summation of the average shifted errors. This average error 
will be the update to the super-resolved image through the iterative process. 

7. Now the super-resolved image HR_B is shifted to the position of every frame, using the motion vectors previously 
computed for every frame. 

8. In such position the error between the current frame and the super-resolved frame in the frame position is computed.  
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9. The error image is shifted back again to the super-resolved image position, using the motion vectors previously 
computed and these errors are averaged in HR_A. 

10. The super-resolved image is improved using the average of all the errors between the previous super-resolved and 
the low-resolution frames, computed in the frame position and shifted to the super-resolved image position, as an 
update to the super-resolved image.   

11. If the variance of the update is below a certain threshold, then very few changes will be made in the super-resolved 
image. In this case, continuing the iterative process makes no sense and therefore it is preferable to abort the process. 

12. Anyhow, the iterative process will stop when the maximum number of pre-established iterations is reached. 
 
The previous steps numbers have been introduced between parentheses as labels in the beginning of the appropriate lines 
for clearness. The memory HR_A is in boldface to remark the different bit wide when compared to the other image 
memories. (Fig. 3) shows the ISR algorithm data flow, using the memories and the resources available in the hybrid 
video encoder platform. 
 
(1) LR_B = LR_I[0] 
(1) HR_B = Upsample(LR_I[0]) 
 
FOR it = 0 .. nr_iterations-1 
      (2) IF (it ≠ 0)    LR_B = Downsample(HR_B)  
       (3) MV_fr2ref[0] = 0 
       (3) MV_ref2fr[0] = 0 
      FOR fr = 1 .. nr_frames-1 
          (4) MV_fr2ref[fr] = Calc_Mot_Estimation (LR_I[fr], LR_B) 
          (4) MV_ref2fr[fr] = −MV_fr2ref[fr] 
          (5) MV_fr2ref[fr] = 2 × MV_fr2ref[fr] 
          (5) MV_ref2fr[fr] = 2 × MV_ref2fr[fr] 
      END FOR 
      (6) HR_A = 0 
      FOR fr = 0 .. nr_frames-1 
          (7) HR_S = Motion_Compensation (HR_B, MV_ref2fr[fr]) 
          (8) HR_S = Upsample(LR_I[fr]) – HR_S 
          (9) HR_T = Motion_Compensation (HR_S, MV_fr2ref[fr])  
          (9) HR_A = HR_A + HR_T/nr_frames 
      END FOR 
      (10) HR_B = HR_B + HR_A 
      (11) variance = variance(HR_A)   
      (11) If (variance < variance_threshold) Then break 
END FOR 
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Figure 2: Pseudo-code of the ISR algorithm implemented on the 
video encoder. 

 
Figure 3: ISR algorithm data flow. 

2.1. Implementation issues 
Table 1 summarizes the memory requirements that the implementation of the ISR algorithm demands for nr_frames=4 as 
a function of the input MBs. The number of MBs in the horizontal direction (columns) has been labelled as MB_x, and 
the number of MBs in the vertical direction (rows) has been labelled as MB_y. For instance, the HR_A memory would 
have a number of macro-blocks equal to (2·MB_x)×(2·MB_y). Because it is a high-resolution image, its size is double in 
both directions. As every macro-block has 16×16 luminance pixels and 8×8 chrominance pixels and, furthermore, there 
exists two chrominance components, the blue and the red ones, this supposes that the overall pixel number is  
(2·MB_x·2·MB_y·16·16) for the luminance and (2·MB_x·2·MB_y·8·8·2) for the chrominance components. Nevertheless, 
it must be taken into account that the HR_A memory is 9 bits wide, and for this reason, to obtain the total number of bits 
it is necessary to multiply by 9 bits each pixel. The remaining memories will be multiplied by 8 bits per pixel. These 
requirements include four input memories as the number of frames to be combined has been settled on four. Also a 
buffer of three rows of macro-blocks for reading the input images, as part of the encoder memory requirements, has been 
included [41]. These memory requirements also take into account the chrominance and the extra bit of HR_A. The total 
memory requirements, as a function of the number of MBs is MB_y·(6724·MB_x+4608) expressed in bytes.  
To perform the up-sample and down-sample operations it is necessary to include in hardware an up-sampling and down-
sampling blocks, in charged of performing these operations on a MB basis. A hardware implementation it is desirable as 
the upsample/downsample processes are very intensive computational tasks in the sense that they are performed over all 
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the image MBs. A software implementation of these blocks could compromise the real time performance, and for this 
reason these two tasks have been included in the texture processor. Up-sampling is performed by nearest neighbour 
replication from an 8×8 pixels block to a 16×16 pixels MB. Down-sampling is achieved by picking one pixel from every 
set of four neighbour pixels, obtaining an 8×8 block from a 16×16 MB.  
The motion estimation and motion compensation tasks are performed using the motion estimator and the motion 
compensator co-processors. These co-processors have been modified to work in quarter pixel precision because, as it was 
previously established, the accuracy of the computed displacements is a critical aspect in the ISR algorithm. The 
arithmetic operations such as additions, subtractions and arithmetic shifts are implemented on the texture processor. 
Finally, the overall control of the ISR algorithm is performed by the ARM processor (Fig. 1). 
 

ISR Algorithm Memory Label 
Luminance (bits) Chrominance (bits) Total (bits) 

HR_A (2·MB_x·2·MB_y·16·16·9) (2·MB_x·2·MB_y·8·8·2·9) 13,824·MB_x·MB_y
HR_B (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
HR_S (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
3 HR Stripes  (2·3·2·MB_y·16·16·8) (2·3·2·MB_y·8·8·2·8) 36,864·MB_y
LR_B (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
LR_I[0] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
LR_I[1] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
LR_I[2] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
LR_I[3] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
MV_mem[0] (MB_x·MB_y·8) 0 8· MB_x·MB_y
MV_mem[1] (MB_x·MB_y·8) 0 8· MB_x·MB_y
MV_mem[2] (MB_x·MB_y·8) 0 8· MB_x·MB_y
MV_mem[3] (MB_x·MB_y·8) 0 8· MB_x·MB_y
Total (bits) MB_y·(35,872·MB_x + 24,576) MB_y·(17,920· MB_x + 12288) MB_y ·(53,792 MB_x + 36,864) 

 
Table 1: Memory requirements of the ISR as a function of the number of the input image macro-blocks. 

3. EXPERIMENTAL SETUP 
 
A large set of synthetic sequences have been generated with the objective of assessing the algorithm itself, independently 
of the image peculiarities, and to enable the measure of reliable metrics. These sequences share the following 
characteristics: firstly, in order to isolate the metrics from the image peculiarities, the same frame has been replicated all 
over the sequence. Thus, any change in the quality will only be due to the algorithm processing and not to the image 
entropy. Secondly, the displacements have been randomly generated, except for the first image of the low-resolution 
input set, used as the reference for the motion computation, where a null displacement is considered. This frame is used 
as the reference in the peak signal to noise ratio (PSNR) computation. (Fig. 4) depicts the experimental setup to generate 
the test sequences [42]. 
The displacements introduced in the VGA images in pixel units are reflected in the low-resolution input pictures divided 
by four, i.e. in quarter pixel units. As this is the precision of the motion estimator, the real (artificially introduced) 
displacements and the ones delivered by the motion estimator are compared, in order to assess the goodness of the 
motion estimator used to compute the shifts among images. Several sets of input frames from random motion vectors 
have been generated. These synthetic sequences are used as the input for the SR process. (Fig. 6)-(a) shows the reference 
picture KRANT together with the sub-sampled sequences that constitute the input low-resolution sequence (b) and the 
nearest neighbour (c) and bilinear interpolations (d) obtained from the first low-resolution frame (frame with zero motion 
vector). 
The pictures obtained with the SR algorithms are always compared to the ones obtained with the bilinear and nearest 
neighbour replication interpolations in terms of PSNR. In this work, the quality of the SR algorithms are compared with 
the bilinear and nearest neighbour interpolation algorithms as they suppose an alternative way to increase the image 
resolution without the complexity that SR implies. The main difference between interpolation and SR is that the later 
adds new information from other images while the former only uses information from the same picture. The PSNR 
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obtained with interpolation methods represents a lower bound in the sense that a PSNR above the interpolation level 
implies SR improvements.  
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Figure 4: Experimental setup for the test sequences generation. 

 
Figure 5: Incremental test for assessing the SR algorithms. 

 
In order to demonstrate the quality increase in the SR image when combining several low resolution images, the 
experiment denoted in (Fig. 5) has been designed. In this experiment, referred as the incremental test, a set of 12 
displacement vectors have been generated, wherein the first is the zero vector and the remaining are eleven random 
vectors. The first displacement vector is (0,0) to assure that the resulting image will remain with zero displacement with 
respect to the reference, enabling reliable quality measurements. From this vector set, the first three vectors are applied to 
the first frame of the KRANT sequence in order to generate the low-resolution input image set, from which the super-
resolved image zero is obtained. After that, a new vector is added to the previous set and these four vectors are applied 
again to the frame 0 of KRANT to generate the super-resolved image one, based on four input low-resolution images. This 
process is repeated until a super-resolved image based on 12 low-resolution input frames is generated. In total, a number 
of 3+4+5+6+7+8+9+10+11+12=75 low-resolution frames have been used as inputs to the SR algorithms in order to 
generate 10 output frames. 
 

(a) (b) (c) (d)  
Figure 6: Reference KRANT picture (a), the low-resolution input sequence derived from it (b) and the nearest neighbour (c) and bilinear 
interpolations (d). 

4. ISR ALGORITHM RESULTS 
 
In this section the test procedures exposed in the previous section have been applied to the ISR algorithm. The 
incremental test described in (Fig. 5) was applied to the ISR algorithm using the KRANT sequence. Initially, an amount of 
80 iterations were settled for every output frame, obtaining the luminance PSNR shown in (Fig. 7). From this chart, it is 
noticeable that for certain frames (combinations of more than 8 frames) the quality rises up to a maximum value as the 
number of iterations increases, while for the other frames, the quality starts to rise and after a few iterations it drastically 
drops. The reason of this unexpected result is that the displacements were randomly generated and so, the samples 
presented in each frame are randomly distributed. If the samples contain all the original information (fragmented over the 
input frames) then the SR process will be able to properly reconstruct the image. If some data is missing in the sampling 
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task, then the SR process will try to adapt the SR image to the available input set, including the missing data that has 
been set to zero values, producing undesirable artefacts when there is a lack of information. As the motion among frames 
has been randomly generated, the probability of having the entire original input data distributed among the low-
resolution frames available to the SR algorithm increases with the number of incoming frames. In this case, after the 
combination of 8 low-resolutions frames, the ISR algorithm is able to increase the quality with the iterations number.  

Krant 75: input frames, 10 output incremental frames and 80 iterations per frame 
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Figure 7: PSNR of the KRANT sequence with 10 incremental output frames using the ISR algorithm with 80 iterations. 

 
Three enlarged details of the pencils of the KRANT frame are shown in (Fig. 8). Image (a) is the nearest neighbour 
interpolation, (b) is the SR image and (c) is the bilinear interpolation of the input low-resolution sequence. 
 

(a) (b) (c)  
Figure 8: Enlarged detail of the nearest neighbour interpolation of the input image (a), the ISR image combining 12 low-resolution 
input frames (b) and the bilinear interpolation of the input image (c) for the KRANT sequence. 

5. NON-ITERATIVE SUPER-RESOLUTION ALGORITHM 
 
Although the iterative version previously described offers very good image quality when mapped onto a hybrid video 
encoder, the challenge is to create a new type of algorithm that, using the same resources, could operate in a single step, 
i.e. a non iterative algorithm suitable for real time applications. The underlying idea is based on the following 
considerations: 

• Every new image adds new information that must be combined into a new high-resolution grid. 
• It is impossible to know ‘a priori’ (for the SR algorithm scope) the position of the new data and whether or not 

they contribute with new information  
Based on the previous considerations, a novel non-iterative super-resolution (NISR) algorithm has been developed. This 
algorithm performs its operations by considering the following steps: 
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1. Initially, the first low-resolution image is translated onto a high-resolution grid, leaving the unmatched pixels to a 
zero value. The size increases in a factor of two, both in the horizontal and vertical directions.  

2. Next, the contributions of the pixels are generated. These contributions represent the amount of information that 
each low-resolution pixel provides to its corresponding neighbours in the high-resolution grid. As several low-
resolution images are initially combined in a grid 2-by-2 times bigger, an initial contribution of 4, for ½ pixel 
precision in low-resolution will be enough in order to keep contributions as integer values. If the resolution of the 
motion estimator is increased or the motion-estimation is performed in high-resolution, higher values are necessary. 
These contributions are expressed over the high-resolution grid. 

3. The relative displacements between the next input image and the first image, that it is considered as the reference 
one, are estimated. These displacements are stored in memory, as they will be used later on. 

4. Steps 1 and 2 are applied to the new input image, i.e. it is adapted to the high-resolution grid, leaving the missing 
pixels to zero and generating the initial contributions.  

5. In this step, both the new image over the high-resolution grid and its associated contributions are motion 
compensated towards the reference image. The real contributions of the new pixels to the high-resolution reference 
image will be reflected in the compensated contributions. 

6. The arithmetical addition between the initial image and the compensated images is performed. The same process is 
completed with initial and compensated contributions. This summation assures further noise reduction in the 
resulting image.   

7. Steps 3 to 6 are applied to the next incoming images. 
8. Once step 7 is finished, a high-resolution image with the summation of all the compensated pixels (stored in HR_A) 

and a memory with the summation of all the compensated contributions (HR_Cont) are obtained. Then the high-
resolution image is adjusted depending on the contributions, as it is indicated in equation (1), where ‘N’ stands for 
the number of frames to be combined, ‘SR(i, j)’ is the SR image, ‘LR_I’ is the low-resolution input image and 
‘contributions’ represents the contributions memory. Assigning to the accumulative memory HR_A a length of 12 
bits, 16 frames can be safely stored in it. In the worst case, an accumulation of a value of 255 will be performed, 
which multiplied by 16 gives 4080, that fits in 12 bits. 

9.  
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10. After the adjustment, it is possible that some pixel positions remain empty, because certain positions from the input 
image set did not add new information. This case will be denoted with a zero value, both in the high-resolution 
image position and in the contributions. The only solution to this problem is to interpolate the zeroes with the 
surrounding information. 

11. As HR_B will store the final super-resolved image, its values cannot be neither below zero nor above 255. 
Therefore, a clip of the final pixel values between 0 and 255 is made.  

In (Fig. 9) can be seen the NISR algorithm, where the previous steps numbers have been introduced between parenthesis 
as labels in the appropriate lines for clearness. In (Fig. 10) it is shown the NISR algorithm data flow, using the memories 
and the resources of the hybrid video encoder. Once again memory HR_A is in boldface to remark the different bit wide 
when compared to the other memories. The block-diagram has been divided in two: on the left side is the zone dedicated 
to the image processing, which makes use of memories HR_A, HR_T, HR_S, LR_I_0 and LR_I, besides of storing the 
motion vectors in MV_ref2fr. On the right side is the zone dedicated to the contributions processing, which makes use of 
memories HR_S2, HR_T2 and HR_Cont. In order to clarify the relations among them, the image data flow has been 
drawn in solid lines, the contribution data flow in dotted-lines and the motion vector flow in dashed-lines. Moreover, the 
functions ‘upsample’ and ‘motion compensation’ have been superscripted with and asterisk to point out their different 
behavioural when they are executing the in SR mode.  
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(1) HR_A.lum  = Upsample_Holes(LR_I_0.lum)  
(1) HR_A.chrom = Upsample_Neighbours(LR_I_0.chrom) 
(2) HR_Cont  = Create_image_contributions  
(7) FOR fr = 1 .. nr_frames-1 
       (3) MV = Calc_Motion_Estimation ( LR_I, LR_I_0) 
       (3) MV = 2 .* MV 
       (4) HR_S.lum     = Upsample_Holes(LR_I.lum) 
       (4) HR_S.chrom = Upsample_ Neighbours(LR_I.chrom) 
       (4) HR_S2 = Create_image_contributions 
       (5) HR_T   = Motion_Compensation(HR_S, MV) 
       (5) HR_T2 = Motion_Compensation(HR_S2, MV) 
       (6) HR_A  = HR_A + HR_T  
       (6) HR_Cont = HR_Cont + HR_T2 
(7) END FOR 
(8) HR_A = 4*HR_A /HR_Cont 
(9) If  (HR_Cont(i,j)==0) THEN HR_B = Interpolate(HR_A(i,j)) 
(9) ELSE   HR_B = HR_A   
(10)Clip(HR_B, 0, 255) // result image in HR_B 

LR_I_0

reference

Upsample*
HR_A

HR_Cont

Create 
Contributions

MV_ref2fr
Motion 

Estimation × 2

HR_S2

HR_T2
Motion 

Compensation*

× 4

HR_B Interpolate

LR_I Upsample* HR_S
Motion 

Compensation*

HR_T

mv

Contributions

Images

 
 
Figure 9: Pseudo-code of the NISR algorithm implemented 
on the video encoder. 

 
Figure 10: NISR algorithm data flow. 

5.1. Implementation issues 
In order to fit the NISR algorithm in the video encoder originally developed by Philips Research, it is necessary to 
perform additional changes in the architecture, namely in the motion compensator and in the chrominance treatment, 
thereby creating a more flexible SOC platform.  
Table 2 summarizes the memory requirements that the NISR algorithm requests. Compared with the ISR it can be 
appreciated that now there are five high-resolution memories instead of three, although the low-resolution and motion 
estimation memories have been reduced from four to two and from four to one respectively.  
 

NISR Algorithm Memory 
Label 

Luminance (bits) Chrominance (bits) Total (bits) 

HR_A (2·MB_x·2·MB_y·16·16·12) (2·MB_x·2·MB_y·8·8·2·12) 18,432·MB_x·MB_y
HR_B (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
HR_S (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
HR_S2 (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
HR_Cont (2·MB_x·2·MB_y·16·16·8) (2·MB_x·2·MB_y·8·8·2·8) 12,288·MB_x·MB_y
3 Stripes HR (2·3·2·MB_y·16·16·8) (2·3·2·MB_y·8·8·2·8) 36,864·MB_y
LR_I[0] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
LR_I[1] (MB_x·MB_y·16·16·8) (MB_x·MB_y·8·8·2·8) 3,072·MB_x·MB_y
MV_mem[0] (MB_x·MB_y·8) 0 8· MB_x·MB_y
Total (bits) MB_y·(49,160·MB_x + 24,576) MB_y·(24,576· MB_x + 12288) MB_y ·(73,736 MB_x + 36,864) 

 
Table 2: Memory requirements of the NISR as a function of the number of the input image macro-blocks. 

5.2. Adjustments in the motion compensator 
The motion compensator implemented in the existing video encoder was designed to avoid visual distortions in the 
resulting images when decompressing them, and in that sense, when an image is shifted out of the physical boundaries, it 
fills the empty zone by replicating the borders. As the motion vectors are usually small compared with the image size and 
due to the lower attention of the human eye to the borders when compared with the centre of the images, this effect is 
negligible. However, to obtain SR improvements the artificial introduction of non-existing data results in quality 
degradation in the borders. The solution is to modify the motion compensator to fill the empty values with zeroes, so that 
the NISR algorithm would have an opportunity to fill the holes with valid values coming from other images. 
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6. NISR ALGORITHM RESULTS 
 
The qualities resulting from applying the incremental test to the KRANT sequence are shown in (Fig. 11). As it was 
expected, as the number of input frames to be combined increases, the PSNR increases until it reaches a maximum of 
38.45 dB when combining 12 low-resolution input frames. The perceptual quality exhibits few variations after 
combining 6 input frames, i.e. when 34.57 dB are reached. In addition, it can be seen that the greatest increment in the 
quality (the greatest PSNR slope) takes place in the first four output frames. All the established facts lead to the 
conclusion that a NISR system can be limited to combine 5 or 6 input frames, depending on the available resources and 
the desired output quality. 
In (Fig. 12) is shown an enlarged detail of the frame obtained as the gathering of 12 frames by the NISR algorithm. In (a) 
it is shown the nearest neighbour interpolation, in (b) the SR image and in (c) the bilinear interpolation. The quality 
improvement of the image is clearly manifested, especially in the case of the letters above the newspaper headlines that 
become legible in the super-resolved image. 
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Figure 11: Incremental test of the KRANT sequence with 10 output frames. 
 

(a) (b) (c)  
Figure 12: Enlarged detail of the nearest neighbor interpolation of the input image (a), the NISR image combining 12 low-resolution 
input frames (b) and the bilinear interpolation of the input image (c) for the KRANT sequence. 

7. ALGORITHMS COMPARISON 
 
The two developed SR algorithms have been compared attending to three main features: the quality reached (measured in 
PSNR dBs), the simulation time (measured in milliseconds) and the memory requirements (measured in Mbytes).   
In (Fig. 13) it is exposed a comparison between the quality obtained by the NISR algorithm and the best results of the 
ISR algorithm (maximum values for 80 iterations). It is clear how the NISR algorithm outperforms the ISR algorithm 
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when the number of low-resolution frames is above 4 frames. The larger PSNR difference occurs when 12 low-
resolution frames are combined, getting a gain of 5.54 dBs the NISR over the ISR algorithm. The average difference is of 
3.08 dB from the combination of 3 to 12 low-resolution frames. 
In (Fig. 14) is shown the ISR frame number 9, as a result of the combination of 12 low-resolution frames. Image (a.1) is 
the SR frame in the spatial domain, and (a.2) is the error image when compared with the original one. Major errors are 
located in the edges zones, i.e. in the high-frequencies. The bi-dimensional Fourier transform in magnitude is shown in 
(b.1) and the error image is in (b.2). As expected, the central zone of the magnitude, corresponding to the lower spatial 
frequencies, exhibit the lower errors. (Fig. 15) shows the same results but for the NISR algorithm. Although the 
perceptual qualities seem to be very similar, the NISR achieve lower errors in the edges in the spatial domain and a wider 
area of low error in the frequency domain, especially in the central low-frequencies zone.   
(Fig. 16) shows the simulation time for the two described algorithms applied the test video input sequences KRANT. In 
both cases 10 output frames have been generated. The results of the SR algorithms come from the incremental 
combination of three to twelve low-resolution frames, but the ISR algorithm performs 8 iterations over the low-
resolution frames to be combined. The total amount of time inverted in the execution of the NISR algorithm is five times 
lower than the ISR algorithm, placing the former in a best situation for a real-time execution scenario. 
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Figure 13: PSNR of the KRANT sequence with 10 incremental output frames using the NISR and the ISR algorithm with 80 iterations. 
 
One of the most restrictive hardware resources in the encoder platform is the memory, as it plays a crucial role in the 
final integrated circuit cost and in the power consumption. Based on tables 1 and table 2, table 3 and table 4 summarize 
the memory requirements of the ISR and the NISR algorithms for the most common input sizes. (Fig. 17) shows a 
comparison of the total memory requirements of the two algorithms. Although until now the NISR algorithm has 
exhibited better time responses and better qualities than the ISR algorithm, this fact comes at the cost of higher memory 
requirements. The memory needed by the NISR algorithm is 1.36 times above the ISR memory. This is mainly due to the 
introduction of the high-resolution memories HR_Cont and HR_S2. 
 

Size MB_x MB_y Memory 
(Kbytes) 

SQCIF (128×96) 8 6 342.1875 
QCIF (176×144) 11 9 690.5742 
CIF (352×288) 22 18 2681.2968 

VGA (640×480) 40 30 8014.6875 
4CIF (704×576) 44 36 10563.1875  

Size MB_x MB_y Memory 
(Kbytes) 

SQCIF (128×96) 8 6 459.0468 
QCIF (176×144) 11 9 931.5966 
CIF (352×288) 22 18 3645.3867 

VGA (640×480) 40 30 10936.1718 
4CIF (704×576) 44 36 14419.5468  

 
Table 3: Memory requirements of the ISR as a function of the 
number of the input image macro-blocks. 

 
Table 4: memory requirements of the NISR algorithm for 
different sizes of the input image. 
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(a.1)

(a.2)

(b.1)

(b.2)  

(a.1)

(a.2)

(b.1)

(b.2)  
Figure 14: ISR frame after combining 12 low-res frames (a.1) 
and the magnitude in the frequency domain (b.1) together with 
their associated errors (a.2 and b.2). 

Figure 15: NISR frame after combining 12 low-res frames (a.1) 
and the magnitude in the frequency domain (b.1) together with 
their associated errors (a.2 and b.2). 
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Figure 16: Execution time comparison between the ISR and 
NISR algorithms presented in this paper 

Figure 17: Memory requirements for the ISR and NISR 
algorithms. 

8. CONCLUSIONS 
 
High resolution images are often required in nowadays multimedia services and applications. In this way, the 
achievement of high quality images by using low-cost SR techniques mapped onto a generic hybrid video encoder has 
been presented in this paper. Low-cost constraints are accomplished by performing only minimal changes on the 
architecture, such as using sub-pixel motion estimation, enough loop memory and additional block-level operator and 
accumulators. In particular, two different SR algorithms are proposed in this work. The fist one, named iterative super-
resolution (ISR) algorithm, presents a much higher performance than classical image interpolation methods. However, it 
is not always possible to achieve SR improvements by using this approach, because if all the sampled data is not present 
(this can happen in non-type 'a' frames), the quality decreases with the number of iterations due to the lack of additional 
‘a priori’ information included in the algorithm. In that sense, it is preferable to limit the number of iterations, as it has 
been stated in this paper. Although the ISR algorithm exhibits a good behaviour and robustness in presence of noise 
and/or inaccurate motion knowledge as well as low memory utilization, real-time conditions are not guaranteed due to its 
iterative nature.  In order to solve this drawback, a non-iterative super-resolution (NISR) algorithm has been developed. 
The experiments carried out reveal a clear quality increase of the super-resolved image as the number of low-resolution 
frames to be combined also increases. The introduction of the contribution concept allows the algorithm to be 
independent from the problems of the borders and, at the same time, supposes adaptive weights for every pixel, 
depending on the motion and therefore on the new incoming information. The NISR algorithm allows obtaining higher 
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image qualities than the ones obtained by the ISR algorithms in a single step, but at the expenses of using higher amounts 
of memory.  
The SR algorithms developed have been successfully implemented onto a HW/SW platform by reusing a generic hybrid 
video encoder instead of developing a specific SR system. The most remarkable results obtained in the implementation 
process in terms of simulation time, memory usage and image quality for both cases have been also presented in this 
paper, establishing a detailed comparison among the two algorithms. The followed methodology assures that the 
platform can be used both in coding mode and/or in SR mode, opening new avenues in the field of high performance 
multiprocessor system on chip (MSoC) video platforms. 
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