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ABSTRACT 

A fundamental approach to a slowly varying amplitude formulation for nonlinear waves in metamaterials will be 
established. The weakly nonlinear slowly varying amplitude approach will be critically examined and some 
misunderstandings in the literature will be fully addressed. The extent to which negative phase behaviour has a 
fundamental influence upon soliton behaviour will be exposed. The method will deploy nonlinear diffraction and a 
special kind of diffraction-management. This is additional to a detailed modulation instability analysis. The examples 
given involve waveguide coupling and a nonlinear interferometer. In addition, a strongly nonlinear approach will be 
taken that seeks exact solutions to the nonlinear equations for a metamaterial. A boundary field amplitude approach will 
be developed that leads to useful eigenvalue equations that expose, in a very clear manner, the possibility that new kinds 
of waves can be generated. 

 
Keywords: Metamaterial, Negative Refraction, Soliton, Nonlinear Schrödinger Equation, Nonlinearity, 
Modulation. 

1. INTRODUCTION 
Since the first observation1 of a soliton by John Scott Russell in 1834, the potential for its application has been slowly 
realised with a considerable impetus from the optical fibre domain2. The kind of soliton that is of interest in the optical 
frequency range is analogous to solitons that can be generated on deep water and these contrast with the KdV solitons 
observed by Russell on shallow water1. For optical systems, soliton research often divides up into an emphasis upon 
dispersion or diffraction. If both are considered simultaneously then the emphasis would be upon so called optical 
bullets, or optical machine guns3, but if diffraction alone is taken as the competitor to nonlinear self-focussing, then it is 
an area of research that comes under the heading called spatial solitons4,5. It is the latter that will be discussed in detail in 
this paper with a special emphasis on how to exploit negative phase metamaterials6-8 to achieve certain types of soliton 
behaviour. 
Even a rapid examination of the literature concerning solitons shows that they are members of a large family1. It is 
therefore interesting to select the appropriate family member for the system under investigation. KdV solitons posses a 
speed that is proportional to their amplitude, but these are not the same kind of solitons that occur on deep water1. Waves 
on deep water are the hydrodynamic analogues. In fact so-called Stokes waves are the surface waves on deep water, 
where the latter comment simply means that the depth is much larger that the wavelength. Such waves are unstable with 
respect to perturbations, or more precisely, modulations, as Lighthill was able to show in 1967. Just as Russell was not 
believed in his time, the result published by Lighthill was also met with widespread incredulity9. Of course Lighthill was 
correct and it is now recognised that a modulation instability regime is a necessary condition for the existence of 
solitons2. For an optical beam, it is the issue of self-focussing competing with diffraction that is resolved by the 
formation of what can be turned as a spatial soliton4,5. Just as in the situation that arises when considering wave packets 
an investigation of modulation instability will lead to the identification of soliton formation. The outcome of such an 
instability analysis is that the wave number associated with the propagation is pure imaginary over a substantial spatial 
frequency region and that this leads to gain. 
A major property of metamaterials10 is their ability to support backward waves6-8,11,12 and this is achieved by the creation 
of artificial materials that posses both dielectric and magnetic properties expressed through the creation of frequency 
dependent relative permittivity and permeability. For such materials the phase accumulation for forward waves can be 
the exact opposite of the phase accumulation for backward waves. Clearly this would require the creation of 

Keynote Paper

Metamaterials: Fundamentals and Applications, edited by Mikhail A. Noginov, Nikolay I. Zheludev, Allan D. Boardman,
Nader Engheta, Proc. of SPIE Vol. 7029, 70291F, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.797437

Proc. of SPIE Vol. 7029  70291F-1



 

 

homogeneous, isotropic metamaterials and this possibility will be assumed below. It is also a current preoccupation to be 
very concerned about losses. For the majority of the work set out below, it will be assumed that losses have been taken 
care of by the creation of a suitable active metamaterial, but it should be pointed out that losses can be safely taken into 
the models provided that dissipative solitons are the accepted outcomes13. 
The discussion presented here will begin with a derivation of the nonlinear Schrödinger equation that describes the 
slowly varying envelope of an optical beam that is propagating through an isotropic, loss-free, double-negative 
metamaterial. This will then be used to engage in a form of diffraction-management14,15 and this will lead not only to a 
fascinating modulation instability analysis, but also to some other coupled state examples. The concluding part of the 
paper deals with what will be termed here “strongly” nonlinear waves. It will be demonstrated that the latter do not 
invoke a slowly varying amplitude and that novel surface waves are an expected outcome. Finally some comments will 
be made about optical bullets and a progression towards the inclusion of damping and the possibility of magnetooptic 
tuning.  
 

2. SPATIAL NONLINEAR SCHRÖDINGER EQUATION 

 
It is appropriate at this stage to use the Fourier transforms with respect to time, so that the angular frequency, ω, is 
introduced, and the field vectors are transformed into the frequency domain. The electric field, magnetic flux density, the 
magnetic field and the displacement  vectors governed by Maxwell’s equations are defined here as 

( ) ( ) ( ) ( ), , ,ω ω ω ω≡ ≡ ≡ ≡E E B B H H D D . Now that the definitions are clarified, it will be assumed that 
from now on it is Fourier component that are being used. Given this notation, the constitutive material relationships can 
be written in terms of a nonlinear polarization NLP associated with the dielectric behaviour and a nonlinear 

magnetization NLM  associated with the permeability. For the moment the nonlinear magnetization will not be used, 
choosing instead to invest the dielectric with nonlinear properties. Given this assumption, 
 

NL= +D ε E P     =B µ H       (1.1) 
 

( )0

1    0    0
0    1    0
0    0    1

µ µ ω
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

µ   ( )0

1    0    0
0    1    0
0    0    1

ε ε ω
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

ε      (1.2) 

 
where the relative permittivity ( )ε ω  and the relative permeability ( )µ ω  are assumed to be frequency dependent and 
describe an isotropic, homogeneous material. It is not the intension at this stage to admit that these properties are 
complex because of the presence of damping. 
It is common practice, as this stage, to assume that = 0∇ E , but this far-reaching assumption needs to be challenged 
because it is not a fundamental member of the complete set of Maxwell’s equations, whereas, indeed, = 0∇ D  is such 
a member. If the usual assumption about ∇ E is not made, then the wave equation, in this case, is16 

 

( ) ( ) ( ) ( )2 2
2 0 0

2 2
0 0

1
NL NLc c

µ ωω ωµ ω ε ω
ε ε ω ε

⎛ ⎞
∇ − ∇ −∇ = −⎜ ⎟⎜ ⎟
⎝ ⎠

P E E P     (1.3) 

 
This equation can be developed to form a description of spatial solitons of the type sketched in Fig. 1. Here a beam 
propagates down the z axis, diffracts along x and is guided with respect to the y direction. 
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Fig. 1. A sketch of how a spatial soliton can be formed within a planar waveguide. The propagating mode is an envelope that is 
quasi-TE 
 

Even though the nonlinearity in the permittivity is assumed to be dominant, this is not a major restriction, given that 

typically a nonlinear permeability contributes a term that is the order of 
2H  and that H is simply related to E. This is 

an important point because if there is nonlinearity only in the permittivity, it is obviously possible to obtain an envelope 
equation purely in terms of a single field component, hence it may be thought that when both ε  and µ  are nonlinear, 
this will inevitably lead to coupled envelope equations. In fact this has already been stated in the literature17 and is 
incorrect reasoning. Any contribution from the µ can be rolled into the contribution from the permittivity, resulting in a 
modified effective nonlinear dielectric susceptibility. In general, for the TE wave sketched in Fig. 1. The components of 
the nonlinear polarization, assuming a homogeneous, isotropic, dielectric are4,5 

 
2 2 2 *

0
3 1 1
4 2 4NLx xxxx x x z x z xP E E E E E Eε χ ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
       (1.4) 

 
2 2 2 *

0
3 1 1
4 2 4NLz xxxx z z x z x zP E E E E E Eε χ ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
       (1.5) 

 
where xxxxχ  is the relevant tensor component of the third order nonlinear susceptibility 
 
However, if there is only weak guiding then it has been shown18 that the longitudinal component is negligible, i.e. 

z xE E<< . Given this fact, it is safe to neglect terms involving zE  in equations (1.4) and (1.5). In practice, therefore, 

only NLxP  survives and it is convenient to drop the subscript x, so equation (1.4) becomes 
 

2(3)
0

3
4NLP E Eε χ=           (1.6) 

 
where, for convenience the nonlinear susceptibility is written as (3)

xxxxχ χ=  
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Only the x-component of the polarization survives and a spatial soliton can propagate as a beam launched at a particular 
frequency 0ω  that is associated with a wave number 0k , where 
 

( ) ( )( )
2

2 0
0 0 02k

c
ω µ ω ε ω=           (1.7) 

 
The electric field component can be decomposed into a slowly varying envelope ( , )A x t  and a rapidly varying (fast) 

carrier wave ( )0 0i k z te ω− . The final envelope equation used here is 
 

( ) ( ) ( )
22 (3) 2

2 2(3)0
0 02 2 2

0

3 32 0
4 4

A Aik A A A A
z x c x

ω χµ ω χ
ε ω

∂ ∂ ∂
+ + + =

∂ ∂ ∂
    (1.8) 

 
Earlier on it was emphasized that the component of field along the propagation direction is negligible, so that non-
paraxiality has been ignored. This means that the opportunity to include extra terms revolves around retaining the final 
term in (1.8) and the possibility of higher-order diffraction. Later on the main diffraction term will be modified, or 
managed to such an extent that the final term in (1.8) will come into play as diffraction, and, in fact, it is called the 
nonlinear diffraction term. It has been shown in the past16 that this term is the dominant correction, even though it is the 
order of a possible quintic correction. 
 
The first point to make is that in a negative phase medium, 0k is negative, so that 0 0k k= −  and 

( ) ( )0 0µ ω µ ω= − , ( ) ( )0 0ε ω ε ω= − . Hence for a metamaterial eqn (1.8) becomes 

 
( )

( ) ( )
(3)22 (3) 2

2 200
2 2 2

0 0 0 0

31 3 0
2 8 8

A Ai A A A A
z k x c k xk

µ ω χω χ
ε ω

∂ ∂ ∂
− + + =

∂ ∂ ∂
   (1.9) 

 
Provided that higher-order terms and non-paraxiality are not taken into account, eqn (1.9) has the same structure as a 
form produced earlier19, but it is emphasized that, once again, that coupled equations are not produced. This is in 
contradiction to a recent publication17. 
 

 
3.  NORMALISATION AND DIFFRACTION MANAGEMENT 

 
At this stage, the sign in front of the main diffraction term is negative so that a self-defocusing nonlinearity is required. 
The sign in front of the nonlinear diffraction term would then also be negative. If very narrow solitons are required in the 
form of optical needles it would be very useful to manipulate the main diffraction term. This can be done by proposing 
that solitons propagate through an alternating periodic medium, during which they experience a positive wave number 
followed by a negative wave number as they cross the various regions. It is easy to imagine how such a structure could 
be created lithographically, even including a suitable deposition that accounts for any possible unwanted reflections due 
to impedance mismatching. The kind of structure envisaged is sketched in Fig. 2.  

 

Proc. of SPIE Vol. 7029  70291F-4



 

 

 
 
Fig. 2. A diffraction-managed waveguide. PPM is a positive phase medium, and NPM is a negative phase medium. 

    
The idea of balancing a PPM and an NPM has previously been discussed in the context of cavities15. Clearly, L is much 
bigger than a wavelength and the latter is larger that the inter-metaparticle spacing. It is assumed here that impedance 
matching is in place. After averaging over the PPM/NPM structure displayed in Fig. 2. the main diffraction term, 
assuming that the nonlinearity is confined to the PPM, the following parameter appears. 
 

01
1 2

02

kD l l
k

= −            (2.1) 

 
where 01k is the wave number of the fast variation in the PPM and 02k  is the wave number of the fast variation in the 

NPM. After scaling x and z to be x wX= and 2
01z k w Z= , where w  is the input beam width, and adopting the 

following transformation for A 
 

2 2
2 (3) 2

1 12

3
8
w l A

c
ωψ χ µ=           (2.2) 

 
the final envelope equation, to be used here, takes the form 
 

( )
2 2

2 2
2 2 0

2
Di

Z X X
ψ ψ ψ ψ κ ψ ψ∂ ∂ ∂

+ + + =
∂ ∂ ∂

       (2.3) 

 
where the nonlinear diffraction enters into the description through the parameter 
 

2 2
01

1
w k

κ =            (2.4) 

4. MODULATION INSTABILITY ANALYSIS 
The foregoing analysis has produced a modified form of the nonlinear Schrödinger equation. Even though it may appear 
that the metamaterial properties have been buried within the equation, it is apparent that the diffraction can be nicely 
managed using a combination of positive and negative phase media. Furthermore, the very interesting nonlinear 
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diffraction property has been included. The latter is a very important step because this nonlinearly induced-diffraction 
assumes a dominant role as the solitons become very narrow and needle-like. It is so dominant, in fact, that it supersedes 
the need to account for non-paraxiality that is sometimes invoked to prevent catastrophic collapse of soliton beams16. In 
this section, the impact of diffraction-management and nonlinear diffraction on modulation instability is discussed. As is 
well known, modulation instability is a precursor to soliton formation2, and forms a valuable stepping stone to the 
investigation of soliton behavior that can include special interactions of the kind associated with potential optical chips.  
Modulation instability analysis is based upon investigating what happens to a steady state solution when a perturbation is 
added. It has already been investigated extensively for metamaterials with the main outcome being a switch in sign for 
the self-steepening term20-22. Naturally, modulation instability analysis could apply to solitons themselves, but in this 
section it is the traditional plane wave steady state solution of the nonlinear Schrödinger equation that is analyzed. Such a 
steady state solution can be written as 
 

0
0

iP ZP eψ =            (3.1) 
 
where 0P  is the normalized power. A small perturbation can be added to this in the form  
 

( ) 0
0

iP ZP a eψ = +           (3.2) 

 
Taking into account only first-order terms in a , leads to 
 

( ) ( )
2 2

0 02 2* * 0
2

a D ai P a a P a a
Z X X

κ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂
      (3.3) 

 
The following solution is now adopted 
 

( ) ( )
1 2

i KZ X i KZ Xa a e a e−Ω − −Ω= +          (3.4) 
 
After the substitution of eqn (3.4) into eqn (3.3), each term of the differential equation produces, respectively, 
 

( ) ( )
1 2

i KZ X i KZ Xai Ka e Ka e
Z

−Ω − −Ω∂
= − +

∂
        (3.5) 

 

( ) ( )( )
2

2 2
1 222 2

i KZ X i KZ XD a D a e a e
X

−Ω − −Ω∂
= −Ω −Ω

∂
       (3.6) 

 

( ) ( ) ( ) ( ) ( )( )0 0 1 2 1 2* i KZ X i KZ X i KZ X i KZ XP a a P a e a e a e a e−Ω − −Ω − −Ω −Ω+ = + + +     (3.7) 

 

( ) ( ) ( ) ( ) ( )( )
2

2 2 2 2
0 0 1 2 1 22 * i KZ X i KZ X i KZ X i KZ XP a a P a e a e a e a e

X
κ κ −Ω − −Ω − −Ω −Ω∂

+ = −Ω −Ω −Ω −Ω
∂

 

(3.8) 
Collecting all the co-efficients of the different exponentials yields the following 
 

( )i KZ Xe −Ω : 
2 2 2

1 1 0 1 0 2 0 1 0 2 0
2
DKa a P a P a P a P aκ κ− − Ω + + − Ω − Ω =           (3.9) 
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( )i KZ Xe− −Ω : 
2 2 2

2 2 0 2 0 1 0 2 0 1 0
2
DKa a P a P a P a P aκ κ− Ω + + − Ω − Ω =              (3.10) 

 
In matrix form, the latter equations become 
 

2 2 2
10 0 0 0

2 2 2
0 0 0 0 2

        
2 0

                             
2

D aK P P P P

DP P K P P a

κ κ

κ κ

⎛ ⎞⎛ ⎞− − Ω + − Ω − Ω⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− Ω − Ω + − Ω⎜ ⎟⎝ ⎠⎝ ⎠

    (3.11) 

 
and the determinant of the matrix in (3.11) evaluates to 
                              

2
2 4 2 4

0 04
DK DP D Pκ= Ω − Ω + Ω          (3.12) 

 
The solution of this is simply  
 

2
20 04 4

2
D P PK D

D D
κΩ Ω

= ± − + Ω              (3.13) 

 
and this now permits a straight forward interpretation. The early analysis has proceeded on the basis that a perturbation 
will vary as ( )exp iKZ±  so, if there is the possibility that K  can become complex, or pure imaginary, gain will be 
implied. 
 
In fact, ( )g Ω , the gain of the system, in this case, is twice the imaginary part of K, i.e. 
 

( ) ( )2Img KΩ = = 2 2
0 04 4D P P DκΩ − Ω − Ω       (3.14) 

 
For 0κ =  the nonlinear diffraction is absent, and this is the full diffraction case ( )1D = , and the result reduces to the 

well-known form2, with max 02PΩ =  and max 02g P= . If 1D ≠  and 0κ ≠  then  
 

( ) ( )2
max 0 04 2 8P D PκΩ = +          (3.15) 

 
 and  
 

( )max 0 02 4g P D P Dκ= +          (3.16) 

 
The important point to remember is that whenever a beam exists, its Fourier transform yields the transverse spatial 
frequency range, Ω . A narrow beam in the x space direction implies that it is a rather broad beam in Ω -space. Hence it 
can be expected that the gain region will extend over a substantial range of Ω . Normally, a beam of modest width will 
have an Ω  spectrum such that its half width does not extend very far down the Ω -axis. In all modulation instability 
analyses the gain goes to a maximum and the location of this maximum is related to the half-width that exists in Ω -
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space. At 0Ω = , the transverse wave number corresponds to an infinite wavelength and, hence, it is like a plane wave, 
so no gain exists. As Ω  increases the effective transverse wavelength decreases so there will come a point at which 
diffraction and self-focusing can not balance, so the gain is brought abruptly to an end. In the case of diffraction-
management, very narrow, optical needle-like beams become possible so the range of Ω  in the Fourier domain becomes 
very large. In fact, really very small effective transverse wavelengths are operative in the beam. This means that the 
position on the Ω -axis, where the gain cuts off, proceeds further, and further, down the scale. These features are 
precisely shown in Fig. 3. 

 
Fig. 3. Regions of gain for a range of diffraction management parameters against transverse wave number. 

 0.0018κ = and 
0 20P = . 

 

5. SOLITON FORMATION AND COUPLING 
The preceding sections lead to a theory of spatial soliton formation in a special metamaterial that is being combined with 
a positive phase medium i.e. a normal positive index material. This is referred to as diffraction-management and, as can 
be seen, a useful envelope equation can be developed. Furthermore, a modulation instability analysis leads to interesting 
conclusions. In this section, the opportunity is taken to consider, first of all, how a soliton is actually formed and to 
examine briefly how sensitive it is to the initial condition concerning the diffraction-management. Secondly, the 
literature shows that the manner in which solitons interact is always fascinating. Rather than deal directly with 
diffraction-managed soliton interactions in the bulk, this section takes a more interesting direction and investigates how 
diffraction management affects a nonlinear coupler23. The latter have many potential applications for all-optical 
operations24,25 on the computing chips of the future, so it is useful to set up a relatively straight forward problem 
involving bright spatial soliton dynamics in a symmetric planar waveguide structure4. 
First of all, Fig. 4. shows generic soliton formation and, in particular, demonstrates a role for the nonlinear diffraction 
introduced earlier on. 
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Fig. 4. Generic pictures of soliton formation for D =10 %. Z is the direction of propagation and is measured in Rayleigh lengths, 

and X is the diffraction direction, and is measured in beam widths. (a) In the absence of nonlinear diffraction an initial 
( ) ( )ψ x,0 = sech x   input yields a low order breather. (b) Addition of nonlinear diffraction causes breather to break up.      

D = 10% including nonlinear diffraction with κ = 0.0018. 
 
Fig. 4. demonstrates that, even if an unstable high-order soliton is created, the nonlinear diffraction introduces stability, 
at a point dependent upon the value of κ. 
The next set of results for this section concerns the following coupler arrangement. 
 

 
Fig. 5. Sketch of a planar waveguide structure. Guide 1 is made of a normal positive phase medium. Guide 2 is diffraction 

managed. The graph showing ν  sketches the extent of linear coupling as a function of guide separation. 
 
The interest here lies in the extent to which beams can communicate between the two guides. The simulations shown 
here refer to a particular form of coupling in which the envelope equation in guide 1 is coupled to guide 2 through a 
quantity 2νψ  and guide 2 is coupled to guide 1 through a quantity 1νψ . Hence, the appropriate coupled equations are 
 

( )
2 2

2 21 1
1 1 1 1 22 2 0

2
Di

Z X X
ψ ψ ψ ψ κ ψ ψ νψ∂ ∂ ∂

+ + + + =
∂ ∂ ∂

      (4.1) 

 

( )
2 2

2 22 2
2 2 2 2 12 2 0

2
Di

Z X X
ψ ψ ψ ψ κ ψ ψ νψ∂ ∂ ∂

+ + + + =
∂ ∂ ∂

      (4.2) 

 
These equations have been solved numerically and some typical examples are displayed below. 
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Fig. 6. The coupling between a pair of waveguides is shown for two cases. For the upper set D = 100% in both waveguides, and 

the small linear co-efficient 0.1ν =  prevents a transfer of energy. In the lower set, both diffraction management and 
nonlinear diffraction facilitates a strong energy transfer. The initial input in both cases is ( ) ( )ψ x,0 = sech x  to guide 1. 

 
For the coupler shown, only linear coupling is considered. As pointed out in the literature23, this is a particular type of 
nonlinear directional coupler. As can be seen in the upper simulations, a small amount of energy does transfer to guide 2, 
but because reducing D leads to strong focusing and very narrow solitons, the lower simulations show that the second 
guide not only receives an energy transfer, but more or less captures it completely.  

6. STRONGLY NONLINEAR WAVES 
If the nonlinearity is strong, the shape of the modal fields of nonlinear guided waves changes significantly with power, as 
demonstrated in the widely cited papers by Boardman and Egan. Fir this regime, the first-order coupled mode approach 
is quite inadequate. This is the situation that will be considered in this section, and will require exact solutions of the 
nonlinear equations. The dielectric tensor will be assumed to be centrosymmetric and the nonlinearity to be unsaturated, 
gaining its nonlinearity from a third-order polarization. As indicated earlier, it is straightforward to include this type of 
nonlinearity into the permeability as well with a suitable modification of the effective nonlinear coefficient. Hence a 
quadratic dependence of the nonlinear refractive index is adopted and waves that are at the fundamental frequency ω and 
3ω can be created. The generation of the third-harmonic will be assumed to be a, poorly phase-matched, small effect. 
The possibility that the nonlinearity will saturate and the role of any absorption process will be addressed elsewhere. It is 
the Kerr regime that is being adopted, therefore, and it will be examined through an investigation of TE waves in a 
nonlinear slab guide that has linear bounding material. Both the relative permittivity and the relative permeability are less 
that zero and, hence, are in the negative phase frequency range of operation. The damping is not considered here on the 
grounds that this is assumed to be an active medium, for which the loss is eliminated, or minimized to have a very small 
influence on the final outcomes. 

Guide 1 

D = 100% 

D = 10% 
κ = 0.0018 D = 100% 

D = 100% 

Guide 2 

Guide 2 

Guide 1 
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 Linear dielectric cladding 3ε  
  3 1µ =  
 
         (Nonlinear) NIM film 
 ( ) ( )2 2 2 20 0ε ε ω µ µ ω= < = <       z 
 
           x  (propagation direction) 
 Linear dielectric substrate 1ε  
  2.45 
 
 
Fig. 7. A nonlinear slab of negative index material [NIM] 
 
For TE waves propagating along the x-axis, with a wave number xk , the equation for the exact amplitude is, expressed 

as a first integral,  
 

2 2 2
2 2 42

2 2 2 2 2 22 2( ) ( ) ( )
2

⎛ ⎞∂⎛ ⎞ − − + =⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠
x

A k A A c
z c c

ω ω αε ω µ ω µ ω      (5.1) 

 

where 2c  is the integration constant, the nonlinear relative permittivity is ( ) 2
2 2NL Aε ε ω α= + , and the linear 

relative permittivity and permeability are, respectively, 
 

( ) ( )
2 2

2 22 2 2
0

,                 1p
B

Fω ωε ω ε µ ω
ω ω ω

= − = −
−

      (5.2) 

 
As stated earlier, for the time being it is the nonlinearity associated with the relative permittivity that is accounted for but 
it would not be difficult to associate a Kerr-like nonlinearity with e permeability as well without making a substantial 
difference to the final outcomes. Note that 2ε  contains the background dielectric constant and that this is modified by 
the plasma frequency term from embedded wires, possibly, to give rise to a negative permittivity. The relative 
permeability is modeled by what might be termed the ‘F model’ in which F = 0.56 and ω0 = 0.4ωp. for the calculations 
reported here. 
 
In the substrate and cladding, the first integrals are 
    

 
2 2

1,3 2 2
1,3 1,32 ( ) 0

∂ ⎛ ⎞⎛ ⎞
− − =⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

x

A
k A

z c
ω ε ω         (5.3) 

 
for which the integration constants are zero because both the substrate and the cladding are of infinite extent. After 
adopting the following transformations to dimensionless quantities 
 

2 2 22 2 2
2 2 2 2

2 2 2 2 2 2 22 2 2 2 2; ; ; ;
2 2

p x
i i x

p p p p

c kcE A C c Z z
c
ωα ω α ωϖ κ µ ε κ ϖ µ ε

ω ω ω ω
= = = = = − = −  (5.4) 
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and the  boundary conditions for TE waves, . 
 

31 2 2
1 2 0 3 20 0

0 02 2

1 1; ; ;bx x x d x d
x x x d x d

EE E EE E E E E E
Z Z Z Zµ µ= = = =

= = = =

∂∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂
(5.5) 

    
the following boundary field relationship emerges  
  

2 2 2 22 2 2 2 2 22 2 2 2 2 2
2 23 2 2 3 2 21 2 2 1 2 2

02 2 2 2
2 2 2 22 2 2 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −− −
− − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
bE Eκ µ κ κ µ κκ µ κ κ µ κ

ϖ µ ϖ µ ϖ µ ϖ µ
   (5.6) 

 
which is the equation of a hyperbola and, although more complicated, is an example of the conic sections used in an 
earlier paper, where the equivalent solution can be found by putting 2 1µ =  in (5.6) to give 
 

 
( )22 2 2

1 3 2 1 32 2 3 21 2
0

2 2
2 2 4bE E

ε ε ε ε εε εε ε − − −−− ⎡ ⎤⎡ ⎤+ − + =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
     (5.7) 

 
which is independent of both frequency and wave number, and, unlike (5.6) gives a fixed conic section on the 

2 2
0 / bE E plane for particular values of permittivities.  In contrast, equation (5.6) is dependent on frequency and wave 

number as well as the permittivities and values of the intensities at the boundaries. 
 
 If the E0 used in the dispersion equation is set to the value (1)

0E   and a point ϖ  and κ  on the dispersion curve is taken 
the boundary field relationship yields a unique hyperbola. Four cases are important. These are 
 

2 2 2
2 2 2 2 2 20,    0,    0,    0,    0,    0C C Cκ κ κ> ≥ < ≤ < <      (5.8) 

 
For example, a surface wave of order 1 is given when 2

2 20, 0> ≥Cκ  the electric field in the film is  
 

1
1 0 2

2 sc sc−⎛ ⎞⎡ ⎤
= −⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠

EE b m a Z
b

ϖ µ         (5.9) 

   
where  
 

2 2 4 2 2 2 2 4 2 2 2 2 2
2 2 2 2 2 24 / 2 4 / 2 ( ) /a C b C m a b aκ κ ϖ µ ϖ µ κ κ ϖ µ ϖ µ= + − > = − − = − (5.10) 

 
and a surface wave of order zero when 2

2 20, 0> <Cκ , with an electric field given by 
 

1
2 2 2 2 -1 2 22

2 0ds dsE a b a b Z E a bϖ µ⎛ ⎞⎡ ⎤= + + + +⎜ ⎟⎣ ⎦⎝ ⎠
     (5.11) 

 
where 
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2 2 2 2 2 24 2 4 2a C b C m a a bκ κ ϖ µ ϖ µ κ ϖ µ κ ϖ µ= + + = + − = + (5.12) 

 
Fig. 8. shows examples of these two wave profiles across the film. 
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Fig. 8. The field profile across the film for (a) an order 1 solution and (b) an order 0 solution respectively. 

For (a) (1)
0 1 30.47, 10.498, 0.01, 1, 2, 45, 1x E Dϖ κ ε ε= = = = = =  and  

for (b) (1)
0 1 30.0.485, 0.84465, 0.01, 17, 2,45, 1x E Dϖ κ ε ε= = = = = = . 

 
These cases show the production of unique surface waves due to a combination of nonlinear and metamaterial properties.  
They can only exist because of the metamaterial properties, but over some frequency range it may be possible to achieve 
similar field distributions in the linear regime. They are surface waves that are unique to this kind of material and could 
not occur if the permeability is set equal to unity. 

7. CONCLUSIONS 
This paper ranges over a number of topics, all of which are associated with soliton propagation or a new departure into 
the area of strongly nonlinear guided waves. An attempt has been made to indicate previous progress towards setting up 
the fundamental nonlinear Schrodinger equation. The development follows the main emphasis in the literature which is 
on third-order nonlinearity. No attempt has been made to discuss second-harmonic generation. This has been deferred for 
later publications. After setting up the basic theory and emphasizing some misunderstanding in the literature, the basic 
nonlinear Schrödinger equation is modified to take into account a special form of diffraction-management. This is 
followed up by a traditional modulation instability analysis and the outcome is supported by detailed soliton formation 
simulations. The latter include a novel, but very important, process called nonlinear diffraction, and the examples given 
tend to focus upon nonlinear couplers. After all this work on weakly nonlinear systems that rely upon a slowly varying 
envelope approach in which the linear modal field remains untouched by the nonlinearity, a new direction is developed 
that involves strongly nonlinear waves. The latter are the outcomes of an exact solution to Maxwell’s equations and are 
so far away from the slowly varying approach, that there is no question that unmodified, linear modal fields will be a 
feature of the solutions. In fact, the guided modes of a nonlinear film of metamaterial are substantially altered by the 
power, and it is shown above that a unique concentration of guided energy is created at a guide surface. This is a creation 
of a surface guided mode that is a direct consequence of the power flow coupling to the change in the boundary 

Z Z 
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conditions from the PPM case that is brought about by the metamaterial properties. Finally, the paper shows that 
nonlinear tunability of negative phase metamaterials is a fascinating area that promises many potential applications. 
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