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Abstract: We report on the spectral beam combining of four narrow-linewidth fiber amplifier 
chains running at different wavelengths. The main amplifier stage consists of a large mode area 
photonic crystal fiber delivering more than 2 kW of optical power. The four output beams are 
geometrically (incoherent) combined using a polarization-independent dielectric reflective 
diffraction grating to an output power of 8.2 kW preserving the beam quality of the individual fiber 
amplifiers. 
OCIS codes: (140.0140) Lasers and laser optics; (140.3510) Lasers and laser optics: Lasers, fiber 
 

1. Introduction 
 
Yb-doped fiber lasers at 1 µm wavelength have been established as a reliable power-scalable laser architecture in the 
past years. The power limit is usually set by damage, thermal issues or nonlinear optical effects. The generation of 
output powers above such limits of a single fiber is considered in current research activities. Coherent and incoherent 
combining schemes for multiple beams were demonstrated. A promising concept is the incoherent spectral beam 
combining (SBC) relaxing the requirements for phase control of the individual beams. Using volume Bragg gratings, 
770 W have been obtained already with the drawback of being influenced by thermal drifts at high power levels [1, 
2]. Output powers up to 2 kW based on fiber amplifiers and a polarization independent dielectric grating have been 
reported by our group most recently.  
In this contribution we report on further power scaling by spectral beam combining. The four individual amplifiers 
have been scaled up to a power of  >2 kW. With a combining efficiency of 99 % we obtained a power of ~8.2 kW. 
The main amplifier fibers support only a few modes resulting in a good beam quality and the beam combination 
setup preserves this beam quality. 
 
2. Experimental 
 
The experimental architecture is similar to the one published previously [3] and is shown in Fig. 1. The individual 
amplifiers are seeded by a fiber coupled wavelength tunable external cavity single-frequency diode laser (ECDL) 
delivering 20 mW. The emission wavelength are tuned to 1040 nm, 1048 nm, 1056 nm and 1064 nm, thus a 
separation of 8 nm. To enhance the SBS threshold a linewidth control is applied, which employs a modulation of the 
ECDL’s driver current with a noise generator resulting in an increased seed-signal bandwidth of ~90 pm. The seed 
signal is amplified in the first amplification stage to a power of ~500 mW. This signal is launched into the second 
pre-amplifier stage using a 1.6 m long, polarization-maintaining photonic crystal fiber having a 40 μm signal core 
and a 200 μm pump core. An output power of ~20 W in a linearly polarized and diffraction-limited beam is obtained. 
The preamplifiers are protected against back reflections from the main amplification stage by optical isolators. 
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Seed Fiber Amplifier

Grating

 
Figure 1: Schematic experimental setup for the spectral beam combining. 

 
The main amplifier-stage consists of a ~12 m long ytterbium-doped photonic crystal fiber prepared for high power 
operation [4]. The active core of the fiber has a measured mode field diameter for the fundamental mode of ~33 μm. 
The pump core is defined by an air-cladding region and has a diameter of 500 μm and a numerical aperture of 0.55. 
The stage is pumped at 976 nm through one fiber facet in a counter propagating configuration by a fiber coupled 
diode laser. The grating, which is used as combining element, is a highly efficient reflective diffraction grating 
(binary grating, 960 lines/mm), optimized for both TE- and TM-polarization, hence, for non-polarized light. Thus, no 
polarization control of the main amplifier is required.  
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Figure 2(a): Combined spectrum, (b) Output characteristic after the grating. 
 
Each amplifier is able to generate an output power of ~2.1 kW limited by the available pump power. However, the 
beam quality is decreased with increasing power due to spatial hole burning that enables the onset of higher order 
modes. The beam quality stays close to diffraction-limited of M²<1.5 up to a power of 500 W but decreased to M²~4 
at 2 kW. The four beams have been geometrically overlapped in near and far field. The combined beams spectrum is 
shown in Fig. 2(a). The output characteristic after the combination is shown in Fig. 2(b). The combining efficiency is 
~99 % measured by the power in the 0th diffraction order. Thus, a combined output power of 8.2 kW could be 
obtained. The measured beam quality at 7.2 kW was M²x=4.3 and M²y=4.2. 
 
3. Summary and conclusion 
 
We demonstrated the spectral beam combination of four narrow-linewidth photonic crystal fiber amplifiers. Each 
individual beam has a spectral width of ~90 pm at an output power of ~2.1 kW and a beam quality of M²~4. The 
polarization independent grating allowed an efficiency of 99%. The combined beam has an average power of 8.2 kW 
(pump power limited) with a good beam quality. Investigations on further power scaling by adding additional 
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channels are under progress. Diffraction limited beam quality will be preserved by advanced fiber designs enforcing 
single mode operation even at higher output power. 
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ABSTRACT

We report on the development and performance of a monolithic, all-fiber, polarization maintaining (PM), Yb-doped 
photonic crystal fiber (PCF) type fiber amplifier.  The key components of the amplifier are a novel multi fiber-coupled 
laser diode stack and a monolithic 6+1x1 fiber pump/signal multiplexer.  The precisely aligned 2-D laser diode emitter 
array found in laser diode stacks is utilized by way of a simple in-line imaging process with no mirror reflections to 
process a 2-D array of 450 elements into 3 400/440μm 0.22NA pump delivery fibers.  The amplifier in this work utilizes 
two laser diode stacks, one at 915 nm and the other at 976 nm for six total delivery fibers, three per stack, with an 
aggregate available pump power of 1.65 kW.  The fiber combiner is an etched air taper design that transforms low 
numerical aperture (NA), large diameter pump radiation into a high NA, small diameter format for pump injection into 
an air-clad large mode area PCF, while maintaining a constant core size through the taper for efficient signal coupling 
and throughput.  The fiber combiner has 6 400/440/0.22 core/clad/NA pump delivery fibers and a 20/440 PM step-index 
signal delivery fiber on the input side and a 40/500 PM Yb doped PCF on the output side.  The etched air taper 
transforms the six 400/440 μm 0.22 NA pump fibers to the 500 μm 0.55 NA core of the PCF fiber with a measured pump 
combining efficiency of 92% with zero brightness drop.  The combiner also operates as a stepwise mode converter via a 
30 μm intermediate core region in the combiner between the 20 μm core of the input fiber and the 40 μm fiber core of 
the PCF with a measured signal efficiency of 90% while maintaining polarization with a measured PER of 20 dB.  A 
seed laser was formed using one of the 915 nm pump legs to end pump a PLMA 20/400 Yb-doped fiber laser which 
provided 80W of seed power at 1085nm.  This seed signal was then fed through the fiber pump/signal combiner with the 
remaining 5 pump legs into the large Yb-doped PCF fiber.  In this configuration a total power of 967 W was observed 
with a slope efficiency of over 75%.  We report the signal coupling efficiency and power handling capability as well.

Keywords: Fiber Amplifier, Power Amplifier, Laser Diode Stack, Fiber Combiners, Photonic Crystal Fiber

1. INTRODUCTION

All-fiber high power fiber amplifiers are a critical component for defense and industrial applications because they 
provide rugged and reliable operation of a compact and relatively low cost coherent light source that can be combined as 
part of a distributed amplifier array or deployed in the gain section of an industrial fiber laser.  Such power amplifiers are 
highly sought after because they offer the prospect of high levels of pump power integration in large mode area (LMA) 
PCF fibers, and add significantly to the ruggedness and reliability of the device by eliminating the losses and alignment 
problems inherent in free-space fiber amplifier architectures.  A significant engineering challenge for such power 
amplifiers lies in the development of key pump and combiner components for monolithic integration.  Current kW class 
fiber lasers achieving single mode outputs have been created by using LMA type fibers with multi-element laser diode 
pumps that are combined to provide pump powers of approximately 1 kW [1].  For powers above 1 kW, large free space 
coupled stacks have been successfully employed to end pump LMA step-index and PCF type fibers [2-3]. For multi-kW 
single mode fiber amplifiers, a LMA PCF has many advantages with the ability to fabricate a very low numerical 
aperture (NA) core and a large high NA pump cladding.

Steady progress in high power all-fiber amplifiers has been stymied somewhat due to the high cost and 
complexity of the pump lasers.  These pumps whether created through the alignment and focusing of combined 
independent single elements, 1-D laser diode bars or 2-D laser diode stacks suffer from a high number of very intricately 
aligned optical micro elements at 0.1 μm level alignment tolerances.  To address this issue, we have developed a multi-
fiber coupled laser diode stack which parallel processes over 450 individual laser diode emitting elements into three 
400/440 μm fibers.  

Fused fiber combiners have been a critical component in current all-fiber lasers and amplifiers because of their 
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ability to efficiently combine both pump and signal light into active double clad fibers. Current fiber combiners [4-8]
have coupling efficiencies of >95% for the pump and >85% for the signal.  Although the performance of these combiners 
is very respectable, there are limitations that prevent this type of coupler from being used effectively in very high power 
(multi-kW) LMA PCF amplifiers and lasers. Foremost, in a typical combiner, a bundle containing a signal fiber 
surrounded by pump fibers is heated and stretched down to a waist that that matches the diameter and NA of the active 
double clad fiber as shown in Fig. 1.  
Because the signal fiber is tapered down 
along with the pump fibers, the resulting 
small core diameter of the signal fiber can 
have a significant mismatch to the core of a 
LMA double clad fiber. The large mismatch 
of mode field diameters leads to 
unacceptably high loss especially for LMA 
PCFs.

Creating all-fiber PCF amplifiers 
has proven to be difficult, especially designs
that can utilize large diameter pump fibers 
(400 μm or greater) that can be bundled into 
6+1x1 configurations for very high power 
operation. To address this challenge, we 
have developed an all-fiber 6+1x1
pump/signal combiner for a LMA PCF that 
combines the output of six 400/440 μm, 
0.22 NA pump fibers and a 25/440 μm PM 
signal fiber into a taper that preserves the 
diameter of the core while the multimode 
pump light is coupled into an active fiber with smaller diameter and high NA.  With this improved design, it is possible 
to reduce signal losses to <0.5 dB, while maintaining 92% pump throughput.

In this paper, we will detail the construction and performance multi-fiber coupled diode laser stacks and the 
6+1x1 pump/signal combiner and demonstrate the use of these components in the operation of an all-fiber, PM, single 
mode Yb PCF power to achieve an output power of 967 W in quasi-CW operation.

2. MULTI-FIBER COUPLED PUMPS

Efficient pump integration is perhaps the most critical task in creating compact and efficient all fiber multi kW 
amplifiers.  The essential element is to create a pump integration system where high brightness fiber coupling is 
accomplished via combining a large number of individual emitters in as parallel a process as possible.  The unique 
spatial emission properties of high power broad area laser diodes allow for the creation of Symmetric Brightness Units 
(SBU’s) where a number of emitters are aligned in the direction of their near diffraction-limited fast axis emission 
planes, such that the combined brightness matches the slow axis brightness of a single or multiple emitters.  Our 
approach takes advantage of the alignment precision inherent in a 2-D array of broad area emitters found in a laser diode 
stack.  By creating the simplifying approach to subdivide the 2-D array into 3 SBU’s for efficient fiber coupling, the 
number of required optical components is greatly reduced as is the optical loss of the system.  For the amplifier, 2 multi-
fiber coupled stacks were created, one operating at 915 nm and the other at 976 nm.  These multi fiber pumps along with 
their aggregate fiber coupled power output are shown in figure 2. 

Figure 1.  A typical pump/signal combiner (top) has high signal loss due to large 
mode mismatches in the tapered region.  An improved combiner (bottom) 
minimizes signal loss by maintaining a constant core size while tapering the 
cladding.
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Figure 2.  Photograph of two 25-bar fiber coupled stacks with a graph showing a total coupled power of 1650 Watts

From the photograph in Fig. 2, the very compact nature of this technical approach is evident.  Continued development is 
underway to improve fiber coupling efficiency and power handling capability.  It is envisioned that through this approach 
a compact, lightweight, and low cost pump integration source of over 4kW in aggregate power will be possible.

3. 6x1+1 ETCHED AIR TAPER FIBER COMBINER

Much of the work completed in developing these devices have been described elsewhere [9].  A summary of the process 
steps involved in creating these combiners is shown in Figure 3.

Figure 3.  Processes for Creating an Etched Air Taper Combiner.  CO2 based laser bundle formation (upper right).  Computer controlled etching 
process (upper left) Taper to PCF spicing (lower right)

To create an etched air taper combiner, a 6+1x1 bundle is created with the pumps and the signal fiber in the center by 
collapsing a glass capillary around the bundle such that there is no deformation to the pump or signal fibers.  At the time 
this process was created, there were no commercially available fiber processing units to process bundles close to two mm 
in diameter.  To overcome this, a bundling station was created using a CO2 laser to provide the proper uniform heating 
for optimum bundle collapse.  Next a uniform adiabatic taper is created by immersing a glass rod (with core) into an 
etchant solution and then using a computer driven process to remove the rod from the etchant solution.  Finally the three
components of the assembly are spliced together to create the bundle.  For the amplifier pump combiner, 6 400/440 μm
0.22NA pump fibers were bundled with a 20/440 μm PM signal fiber.  An etched air taper region was created from a 
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1.2mm outer diameter/30 μm core pulled fiber rod.  The bundle/taper spliced assembly was then spliced to the 40/500 
μm PM Yb-doped PCF gain fiber.  The PCF was air-clad with a 0.55 NA for the inner pump cladding.  Pump transfer 
efficiency was measured to be 92% with no brightness drop while the signal transfer efficiency was measured to be over 
90%.  A single plane of polarization from input signal to gain fiber was maintained throughout the device.  We measured 
a PER of 20dB through the combiner.

A key to high power operation of the combiners is the packaging.  Even with losses on the order of 5%, 2kW operation 
requires in excess of 100W to be effectively dissipated from a very small physical space.  For these combiners, a special 
high power dissipation package was designed and developed.  A sample device was power tested in the laboratory of 
Prof. A Galvanaskas at the University of Michigan.  The results of this testing is shown in Fig. 4. With 1.5 kW of 
launched pump power, we measured nearly 1400 W of combined pump power out of the combiner for a transmission 
efficiency of 92%.  During the entire testing cycle, a thermal camera was used to observe the fiber combiner under high 
power operation.  The air taper, taper to PCF splice and strain relief are clearly shown in Fig. 4.  Since this device is 
being operated at zero brightness drop, the largest point of loss in the combiner is at the taper to PCF splice (about 5% to 
6%).  At this loss point, the PCF fiber is etched to create a scattering/mode stripping point to remove the non-coupled 
light.  While the vast majority of this light is directed out of the fiber at this point, a small amount of the residual light is 
guided and captured at the strain relief point.  At the strain relief point, the highest temperatures in the combiner were 
observed, approximately 104oC for 1.5 kW of input power.  This temperature is well below the 260oC temperature limit 
of the high temperature silicone used to secure the fiber.  Considering how well this combiner performed at the 1.5kW 
level, we estimate that the combiner in its current level of development is capable of 2kW pump combining.

Figure 4.  (Left) Power testing of the etched air taper combiner demonstrating 92% pump combined efficiency with an input power of 1.5 kW. (Right) 
A thermal camera image of the combiner under high power operation.

4. POWER AMPLIFIER CONSTRUCTION AND OPERATION

Due to the difficulty in obtaining 100 W fiber laser seed sources and in order to completely characterize the fiber 
amplifier, our own CW seed source was fabricated by taking one of the 200 W pump legs from the 915 nm fiber coupled 
stack and end pumping a 20 m length of 20/400 μm Yb-doped LMA fiber with a HR FBG on the input side and an 8% 
FBG output coupler.  The seed source was first fabricated and characterized.  Approximately 75 W of output power at 
1085nm was achieved and available to use as a seed to the power amplifier stage.  This seed source was then fed through 
the signal port of the combiner.  The remaining 2 ports of the 915nm source and the 3 ports of the 976nm pump were 
spliced to 5 of the 6 ports on the combiner.  The combined pump and signal was then spliced to the 40/500 μm PM Yb 
PCF fiber. At the output of the fiber amplifier, a power meter was placed a distance from the fiber with an aperture to 
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separate the signal from the unabsorbed pump.   The schematic of this amplifier is shown in figure 5.  

Figure 5. Schematic of the 976 W fiber MOPA showing the configuration of the multi-fiber coupled stacks and 6+1x1 pump-signal multiplexer.  

Also shown in Fig. 5 is the input vs. output power graph for the fiber amplifier.  In order to avoid fiber damaging self Q-
switching, the 915 nm pump was turned on first, to initiate the seed laser and pump part of the power amplifier in a low 
gain configuration. With 915 nm pump turned on, an output of the power amplifier of 300 W was observed with an 
absorbed power slope efficiency of 83%.  The addition of the 976 nm pump increased the power amplifier output to a 
maximum of  976 W with an absorbed power slope efficiency of approximately 75%.  A visual inspection of the beam 
indicated that no other higher order modes were present.

Several improvements are envisioned for this amplifier.  First, pumping with both sources at 976 nm would allow for a 
shorter fiber to be used and optimized for a common wavelength.  Second improvements in fiber coupling efficiency for 
the pumps would allow for more pump power to be provided to the amplifier.  Currently the seed source has the broad 
spectrum characteristic of fiber lasers.  Utilizing narrow band seeds will require the use of more specialized PCF core
designs than the one currently employed.  Finally in the current set up none of the components are properly heat sunk so 
to avoid component overheating.  As such, the system is run with a 10ms pump pulse at 10 Hz.  Proper heat sinking will 
allow for true CW operation.

5. CONCLUSIONS

Successful operation of an all-fiber 967 W Yb-doped PM PCF fiber amplifier has been achieved through the 
development of 2 key amplifier components; namely, a multi-fiber coupled laser diode stack and a high power capable 
etched air taper 6+1x1 fiber pump/signal combiner.  Not only have these two key components have they been 
successfully demonstrated and operated, the critical processes for assembling these components have been fully worked 
out allowing for the fabrication and production of multiple units.  With continuing improvements, the goal of fielding 
near diffraction limited, highly linear power amplifiers operating near 3kW or higher in ultra compact, highly rugged and 
reliable enclosures will be realizable.

The development of the key amplifier components was funded under ARL contract W911NF-07-2-0063.  Fabrication 
and demonstration of the power amplifier was funded under AFRL contract FA9451-10-M-0078.  Adaptation of this 
technology for pulsed applications was funded under NASA contract NNX10CD89P.
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New fiber designs have been increasing the performance of high-power fiber lasers. To lower the impact of 
nonlinearities, large-mode areas are required, which leads to fiber designs supporting a few modes. In order to 
ensure an excellent beam-quality from these sources, a high premium is put on modal discrimination. Thus, it is 
essential to develop experimental methods that reveal the modal content and modal weights. One of the 
promising new methods is spatially and spectrally resolved (S^2) imaging, as it does not make any assumption 
on the properties of the fiber to be tested [1, 2]. However, the technique makes it difficult to analyze fibers in 
which the modes exhibit small relative group delays (e.g., in the case of large mode area fibers). Particularly, the 
spectral interference fringe spacing becomes non-specific as group-velocity dispersion plays a dominant role for 
a broad spectrum, which is required to record the spectral interference. 
In this contribution, we demonstrate, for the first time to the best of our knowledge, a method that enables modal 
reconstruction at small intermodal delays even for spectral bandwidths smaller than that needed for measuring a 
single fringe of an interference spectrum. The novel technique is based on optical low-coherence interferometry 
(OLCI). In contrast to previous work [3, 4], we also account for the influence of group-velocity dispersion 
(GVD) on the modal weights and determine the correct multi-path interference (MPI) values in a few-mode 
fiber. This requires no knowledge about the optical properties of the fiber to be characterized. For a spectral 
bandwidth as small as 4 nm, we measure intermodal delays as short as 2.8 ps at mode-extinction values up to 18 
dB. These values are specific to the fiber under test, but our technique is capable of measuring intermodal delays 
as short as the ultimate physical limit in form of the coherence time. This makes it highly attractive for the 
characterization of the next generation of high-performance fiber laser.  

  
(a) (b) 

Fig. 1 (a) Schematic of the setup, which is based on a Mach-Zehnder interferometer (SLD: 
superluminescent diode, LPG: long period grating, HOM: high order mode) (b) Cross-correlation trace 
for the entire image (data is offset corrected) (bandpass filter is at λ=780 nm) 
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Fig. 2 (a) Fit of the model to the envelope of the experimental data, shown in Fig. 1 (b) for the first 
peak (corresponding to LP01) and (b) for the second peak (LP02) 

 
A typical schematic of the experimental setup for OLCI measurements is shown in Fig. 1(a). The near-field at 
the output of the fiber is imaged onto a camera, and interfered with the collimated, expanded beam of the 
reference arm. The few-mode fiber under test is the final element of a module (L=0.6 m) consisting of a single-
mode fiber, a turn around point long-period grating (TAP LPG), and the higher-order mode (HOM) fiber (L=0.4 
m) [5]. The LPG yields a well-defined mode conversion efficiency from LP01 core-mode to LP02 core-mode. To 
detect the cross-correlation signal between the reference and the different modes, a computer-controlled 
translation stage has been built in the reference arm in order to scan across the modal delays for each individual 
mode in the signal arm. Figure 1(b) shows an example of the coherence trace (integrated over all pixels of the 
camera). The peaks in the trace correspond to the two different modes that have been excited in the HOM fiber. 
In general, the recorded signal contains a high-frequency contribution, as shown in Fig 1(b), the envelope of 
which contains all the information of interest. 
We have developed an analytical model that accounts for the influence of dispersion on the cross-correlation 
data. Specifically, dispersion decreases the amplitude of the peaks in the cross-correlation signal. Fig 2 (a) and 
(b) show the result of the fitting of the model for the two peaks seen in Fig. 1(b). Since this fitting is based on the 
same spectrum, the difference in shape is solely due to the impact of dispersion. In this way, the group-delay 
dispersion values are found for every mode. By tilting the 4-nm bandpass filter, these parameters can be 
retrieved as a function of wavelength. Fig. 3(a) and (b) shows the dispersion and relative group-delay vs. 
wavelength, respectively. Using these parameters, the mode profiles are determined by fitting the analytical 
model at every pixel. In this way, the LP01 and LP02 mode have been retrieved, as shown in Fig. 4(a) and (b), 
respectively. Moreover, the relative (dispersion-corrected) weights of the modes can be obtained. To 
demonstrate the accuracy of the method, in Fig. 4(c), we show the MPI as a function of wavelength. These 
values match well with the mode conversion efficiencies independently measured by recording the LPG loss 
spectrum (the MPI is defined as 10 log10( ∫∫ ILP01(x,y) dxdy / ∫∫ ILP01(x,y) dxdy ). 

 
Fig. 3 (a) Group-delays of the two modes, and (b) Dispersion as a function of wavelength position of 
the bandpass 
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(c) 

Fig. 4 (a) and (b) Retrieved modes at a wavelength of 780 nm; (c) Multi-path interference as a function 
of the spectral position of the tunable bandpass filter. 

 
In conclusion, for the first time, to the best of our knowledge, the impact of dispersion on the modal weights of a 
few-mode fiber has been demonstrated. This has allowed us to accurately determine modal weights even in 
fibers whose modes have small relative group delays but distinct dispersive behavior. This makes it highly 
attractive for the characterization of fibers that are being developed for next-generation high-power fiber lasers.  
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xxix





 

 

Power-scalable internal frequency doubling scheme for 
continuous-wave fiber lasers 

 
Rafal Cieslak* and W. Andrew Clarkson 

Optoelectronics Research Centre, Univ. of Southampton, Highfield, Southampton, SO17 1BJ, UK  

ABSTRACT 

We describe a simple power-scalable concept for efficient second harmonic generation in a cladding-pumped 
continuous-wave fiber laser.  Our approach makes use of an internal resonant enhancement cavity to increase the 
intracavity power and second harmonic conversion efficiency without the need for active cavity length control and 
stabilization.  This technique has been applied to a cladding-pumped Yb-doped fiber laser yielding 15 W of linearly-
polarized continuous-wave green output (at 540 nm) for 90 W of absorbed diode-pump power (at 975 nm). The internal 
conversion efficiency of the laser with respect to the fundamental power entering the enhancement cavity was >63%.  
The prospects for further improvement in performance with respect to conversion efficiency and output power will be 
discussed. 
Keywords: fiber laser, ytterbium, continuous wave, visible laser, green laser, second harmonic generation 
 

1. INTRODUCTION  
High power laser sources emitting in the visible spectral region have a diverse range of applications in areas such as laser 
processing of materials, projection displays, medicine and sensing. For the continuous-wave (cw) operating regime the 
most popular approach for generating visible output is via intracavity second harmonic generation in a diode-pumped 
‘bulk’ solid-state laser. This approach exploits the relatively low resonator losses and hence high intracavity powers that 
can be achieved in these lasers to yield high second harmonic conversion efficiency and output powers in multi ten-watt 
regime [1]. However, scaling to higher powers is rather more challenging due to the effects of heat generation in the laser 
medium which lead to degradation in beam quality and increased resonator loss. Fiber lasers benefit from a geometry 
that is relatively immune to the effects of heat generation in the core and hence offer a route to much higher power levels 
in the near-infrared wavelength regime via the use of cladding-pumped architectures [2], and hence offer the prospect of 
much higher power levels in the visible regime via nonlinear frequency conversion. Unfortunately, the technique of 
intracavity second harmonic generation is not well-suited to cladding-pumped fiber lasers, since they have rather high 
resonator losses. One solution to this problem is to employ the technique of external resonant cavity second harmonic 
generation. This approach has been successfully applied to cw fiber sources [3], but suffers from the drawback of added 
complexity since a single-frequency fiber master-oscillator power-amplifier is required and the master-oscillator and/or 
resonant cavity lengths must be actively stabilized to ensure that the resonance condition is maintained at all times. 
 
In this paper we present an alternative scheme for efficient second harmonic generation in cladding-pumped continuous-
wave fiber lasers.  Our approach makes use of a simple fiber laser resonator containing an internal resonant enhancement 
cavity with a nonlinear crystal for second harmonic generation.  The fiber laser automatically lases on axial modes which 
are simultaneously resonant in the enhancement cavity and main cavity. As a result, the intracavity power in the 
enhancement cavity is increased to many times the cw power that can be extracted from the fiber laser alone, leading to      
high second harmonic conversion efficiency.  In contrast, to external resonant frequency doubling, this approach does not 
require a single-frequency fiber source and there is no need for active cavity length stabilization since the fiber laser can 
only lase on axial modes which are resonant in the enhancement cavity. We have applied this technique to a cladding-
pumped ytterbium(Yb)-doped fiber laser to achieve efficient nonlinear frequency conversion of near-infrared 
(fundamental) output at ~1080 nm to the green output at ~540 nm. 
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2. EXPERIMENTAL SET-UP AND RESULTS 
The experimental configuration (shown in Fig. 1) comprised a double-clad fiber with a polarization-maintaining Yb-
doped core in a simple standing-wave resonator. Feedback for lasing was provided by a diffraction grating at one end of 
the fiber, and by an external cavity containing a resonant enhancement cavity at the opposite end of the fiber. A simple 
four-mirror ‘bow-tie’ cavity design was employed for the enhancement cavity with a Brewster-angled LiB3O5 (LBO) 
crystal placed in an oven and cut for type I non-critical phase matching. Pump light was supplied by a fiber-coupled 
diode source at 975 nm and coupled into the end of the Yb-doped fiber adjacent to the diffraction grating. The diffraction 
grating was used to select the operating wavelength and narrow the emission spectrum to lie within the phase matching 
bandwidth for second harmonic generation. 

 

 
Figure 1. Schematic of the experimental set-up 

With this set-up, we obtained 15 W of CW second harmonic output (at 540 nm) in the forward direction (Fig. 1), 
corresponding to 19 W generated inside the LBO crystal, for 90 W of absorbed diode pump power (at 975 nm). The 
output power in the reverse direction was <100 mW. The internal conversion efficiency of the laser with respect to the 
fundamental power entering the enhancement cavity was >63%. The output was linearly-polarized with a beam 
propagation factor (M2) <1.25. The laser was tunable over the range of 540-560 nm (for a 20 m long Yb-doped fiber) and 
over the range 520-550 nm (for a 10 m long fiber) by adjusting the grating angle and the oven temperature to maintain 
phase matching. The output power stability (rms noise over 100s) was measured to be <0.7%. These preliminary results 
were obtained with a non-optimal set-up due to limited availability of components. The prospects for further 
improvement in performance in terms of output power, conversion efficiency and range of operating wavelengths will be 
discussed. 

 
Figure 2. Generated second harmonic power at 540 nm as a function of absorbed diode pump power at 975 nm 
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ABSTRACT 

We present high power results of a co-pumped monolithic polarization maintaining (PM) Yb-
doped fiber amplifier seeded with a combination of broad and single-frequency laser signals. For 
the former, a tunable 1035-1045 nm source was used while the latter operated at 1065 nm. This 
two-tone concept was used in conjunction with externally applied or intrinsically formed thermal 
gradients to demonstrate at high power combined SBS suppression factors of up to 7 dB in a 7 
meter long Nufern 25/400 fiber. Depending on the input parameters (seed powers and wavelength 
of broadband source) and the thermal gradient, the output power of the single- frequency signal 
ranged from 80 W to 203 W with slope efficiencies from 70-80%. The 203 W output with a 
nominal linewidth of 100 kHz was obtained through the application of an external thermal gradient 
and by seeding the broadband signal at 100 times the power of that of the single-frequency seed. 
To the best of our knowledge, the 203 W result is the highest reported in the literature for 
monolithic PM single frequency fiber amplifiers. Furthermore, measurements of the spectral 
content of the backward light as recorded on an optical spectrum analyzer and a photodiode 
indicated that we were operating below the SBS threshold.  We estimate that, with sufficient pump 
power and optimized fiber length, approximately 300 W of single-frequency output can be 
obtained.   
 
Keywords: Yb-doped fiber lasers, stimulated Brillouin scattering, nonlinear optics 
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Attachments:  

 

Figure 1   Experimental set-up of monolithic two-tone fiber amplifier system. PD 1, PD 2, PD 3, and PD 4 are photodiodes. ISO 1 
and ISO 2 are isolators. PM 1, PM 2, and PM 3 are power meters. The ASE filter is used to suppress noise introduced by the 
broadband laser in order to allow for seeding with highly skewed ratios. 
 
 

 

Figure 2 Reflectivity vs. single frequency 1065nm signal output power for a PM monolithic amplifier in different thermal 
configurations : single tone all on cold spool, two-tone all on cold spool seeded with 1035 nm broadband light , and  two-tone 
with 6 m on cold spool and 1 m left to cool in air under ambient conditions (thus utilizing quantum defect heating). Unlike the 
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single tone case, the thermal gradient developed through quantum defect heating develops at the output end of the fiber; thus 
allowing for further SBS suppression.      
 
 

 

Figure 3  Single-frequency output power vs. launched 976 nm power. The broadband seed operated at ~1035 nm. 
Approximately 6 meters of the fiber were wrapped around a 12 °C spool with approximately 1 meter wrapped around an 80 °C 
spool. At maximum available pump power, the output was 203.5 W. At this power, the SBS was below threshold. 
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