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Introduction

The Thirty-Seventh conference on Infrared Technolo-
gy and Applications was held the week of April 25-29, 
2011 at the Orlando World Center Marriott Resort and 
Convention Center in Orlando, Florida. The agenda 
was divided into 23 sessions:

1.  Target acquisition with today’s leading imaging 
technologies

2.  Threat identification I
3.  Threat identification II
4.  Smart imagining and signal processing
5. QWIP and QDIP
6.  Type II Superlattice FPAs I
7. Type II Superlattice FPAs II
8.  Emerging uncooled technologies
9.  Uncooled FPAs and applications I

10. Keynote—Wide-area infrared surveillance: per-
formance requirements and technology needs

11. Uncooled FPAs and applications II
12. NIR/SWIR FPAs and applications
13. IR Optics I
14. IR Optics II
15. Cryocoolers for IR Focal Plane Arrays
16. HOT—High Operating Temperature FPAs
17. Active imaging I
18. Active imaging II
19. HgCdTe
20. IR optical materials
21. Application of selected technologies
22. Various uncooled detector technologies I
23. Various uncooled detector technologies II

In addition, there were thirty poster papers presented 
for discussion on Thursday evening—these have been 
added to the 23 sessions in the Proceedings. High-
lights of six topical areas are summarized below:

• Target acquisition and threat identification
• Optics
• Smart image and signal processing
• Uncooled thermal detectors
• Photon detectors
• Cryocoolers

Target Acquisition / Threat Identification

Detection, recognition and identification of objects 
relevant to defense and security were discussed in  
sessions 1 - 3 and 21. The scenarios varied from faces 
at a few meters distance to Earth observation from sat-
ellites. Focus was put on demonstrating application of  
advanced technologies, techniques and design meth-
ods in new systems mounted on various platforms.  

Integration of state-of-the art broadband InSb or 
HgCdTe FPAs in a compact long range target ac-
quisition thermal imager was demonstrated. Cooled 
detectors having 1280 x 1024 pixels were used and 
target identification was predicted for ranges up to 7 
km. While discussing the design of the imager, a “vi-
sualization tool” was described. The tool is a holistic 
simulation of the thermal imager which starts from us-
ing high resolution visible images. 

These long-range imaging systems employ cryogeni-
cally cooled FPAs. Several uncooled microbolometer 
FPAs were presented and simulation was used to com-
pare their performance in systems with that of state of 
the art 2nd generation, scanning, cooled LWIR arrays. 
It was shown that similar recognition ranges may be 
achieved for the two types of systems. 

Fast spectral scans are frequently required for detec-
tion and identification of targets. This is the case when 
the target or sensor system moves fast, the signature 
changes rapidly, as during an explosion, or in the pres-
ence of turbulence. Several systems employing fast 
spectral imaging were outlined. One demonstrated the 
marriage of 3rd generation FPAs and micro-optical dif-
fractive lens arrays. This system allows target ID via 
simultaneous spectral investigation.  

Defense and security agencies are in constant search 
for new ways of detecting chemical and biological 
threats used by terrorist organizations. One research 
institute demonstrated their four-channel SWIR/
MWIR radiometer for simultaneous four band mea-
surements with a rise time of 6 µsec. The measured 
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data may be used for identifying explosives and pro-
viding kill assessment. 

While this system investigated explosions, another 
system was demonstrated which detects highly en-
ergetic materials (HEM) and homemade explosives 
(HME) prior to explosion at stand-off ranges as long 
as 60 meters. The high spectral resolution was pro-
vided by use of a MWIR Fourier Transform interfer-
ometer. Both passive and active modes of operation 
were demonstrated.  

High reliability infrared detectors were discussed for 
space applications. These detectors cover various 
kinds of applications like Visible to VLWIR hyper-
spectral observation of the earth’s atmosphere for me-
teorological or scientific purposes. 

An airborne thermal infrared imaging spectrometer 
with 128 bands in the LWIR window was presented. 
Results from flight trials were shown.

It is known from measurements that the identification 
range advantage obtained by MWIR, as opposed to 
LWIR, may be wiped out in the presence of strong 
turbulence. Turbulence compensation is well known 
in astronomy. Can the same techniques be used in 
ground-to-ground scenarios? One laboratory suggest-
ed a method based on multiple time-separated images. 
It was demonstrated in simulations that the method 
has the potential of providing turbulence-free images 
and improved long range target identification—Fig. 1. 
  
Recognition of human faces at public places like air-
ports is a very important security-related means for 
apprehension of terrorists. Variation of illumination 
and lack of same hampers face recognition in the vis-

ible spectrum. Veins and tissues give rise to a unique 
thermal pattern which is different even for identical 
twins. Two universities have collaborated on the de-
velopment and implementation of an affordable, ro-
bust and accurate security system based on facial ther-
mograms. Presented experimental results showed an 
average recognition success rate of 94%. 

Optics

Presentations in the three IR optics sessions, 13, 14 
and 20, showed a strong effort by the optics commu-
nity to answer the military’s requirement for simulta-
neous operation in two or more of the spectral bands 
traditionally called “atmospheric windows”. The use 
of multiple band operation facilitates target detection 
and identification. These systems are also required to 
be compact and light.

Which is the optimal type of a multiband optical sys-
tem—refractive or reflective? Last year this confer-
ence heard a presentation of an essentially reflective 
multiband system which used folded optics in order 
to attain good compactness.  This design concept was 
challenged in the present conference by a refractive 
system which was claimed to operate simultaneously 
over a large number of bands between visible and 
LWIR. The optimum combination of optical materials 
is determined by use of numerical methods to evalu-
ate the dispersive properties of  materials in terms of 
both instantaneous values and volatilities. 

Several multiband optics designs were presented. One 
presentation discussed the design and development 
of a dual field of view, all-refractive, infrared optical 
system that images the MWIR radiation in one field 
of view and the SWIR in a narrower second field of 
view, both onto the same detector. Another walked the 
attendees through the selection of materials for a re-
fractive system operating simultaneously in the SWIR 
and LWIR bands. A third presentation demonstrated a  
novel, all-reflective, off-axis optical systems for appli-
cations in space. Two designs are shown in Figure 2.

A group of  laboratories reported on a cooperative 
effort to incorporate wide fov imaging functions, in-
cluding compact and robust hyper– and multi-spectral 
imagers, inside a cooled detector dewar. This minia-

Fig. 1. Defocused input image (left) and processed    image (right). 
Defocusing simulates turbulence.
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turization gives imaging capabilities to vehicles with 
small payload capacities. The stable low temperature 
improves the system sensitivity. First experimental re-
sults were presented from two spectral system archi-
tectures based on new optical designs. One of these is 
illustrated in Fig. 3. 
 
The detector is often considered the “heart” of the 
system. To protect this vital component and its signal 
processor from intense blinding radiation from natural 
sources like the sun or from countermeasure sources, 
one paper presented a protection filter which operates 
on the exposed FPA pixels and returns to a neutral 
state when exposure is terminated. 

Development of opto-mechanical systems requires 
strong communication between the various engineer-
ing and manufacturing functions.  One company dis-
cussed their method and software for tightly integrat-
ing optical and mechanical design and fabrication and 
testing. Several examples were presented showing im-
portant gains in rapid and effective development.  

One presentation focused on antireflection coatings 
for multi-lens systems with simultaneous operation in 
the MW- and LW-bands. A 10-element system with 
95% AR transmittance per lens in each band will 
have an overall transmittance of about 60%.  Design, 
coating, and characterization of high Dual Band Anti-

Reflection, DBAR, films for a 3rd Gen set of lenses 
were demonstrated. Dual band and broadband trans-
mittances were compared. 
 

Smart image and signal processing 

Session 4 on smart image and signal processing in-
cluded papers featuring readouts with on-chip pro-
cessing to enhance the functionality of the FPA. A 
variety of feature options were described in separate 
papers, including:

• multi-resolution and multi-scale imaging
• combining thermal imaging with laser range-

finder functions
• designs to overcome reset noise in CTIA pix-

els
• calibration of polarimeter FPAs
• hexagonal pixel layout FPAs and related sig-

nal processing functions

Figure 4 illustrates the angular output before and after 
calibration of a four-pixel group that have polarizer 
grids (vertical, horizontal, and ± 45°  orientation) over 
the pixels.

The difference of Gaussians was used to extract fea-
ture edges in an array of pixels from local contrast 
differences as illustrated in Fig. 5.

Fig. 3.  (a) Compact multispectral camera integrated in cold shield. 
(b) Seen in opened laboratory dewar. 

Fig. 2. Multi-band optical designs using three powered optical 
mirrors. The systems have two (left) and four (right) FPAs.

Figure 4. Average response of four polarization 
filter orientations before (top) and after (bot-
tom) calibration.
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Uncooled thermal detectors

Sessions 8, 9, and 11, 22, and 23 discussed uncooled 
detectors. The two leading uncooled technologies 

– vanadium oxide (VOx) and amorphous silicon mi-
crobolometers are continuing to be rapidly improved. 
Development of 17 µm pixel pitch FPAs is being ex-
tended to both smaller arrays—320 x 240—and ar-
rays larger than 3 Mpixel—2048 x 1536. Currently, 
the largest such array - made by a U.S. company - is 
shown on a wafer in Fig. 6. 

In addition, development of sub-17 µm pixel FPAs is 
continuing in the U.S., France, Japan and Sweden.

Two Japanese companies have made advances in 
uncooled SOI (silicon-on-insulator) technology in 
which change in the forward bias voltage of silicon 
diodes with temperature is used to sense the incident 
infrared radiation. One company showed that the 
technology could be pushed to pixel sizes as small as 
12 µm. Another company improved its SOI process by 
using 0.13 µm CMOS design rules and by placing mi-
cro-holes in the active cell that reduce the thermal ca-
pacity (but which do not decrease the absorption since 
they are smaller than the infrared wavelengths). This 
process is now believed ready for volume production. 
Figure 7 shows an image formed with this 320 x 240 
SOI FPA with 22 µm pixels.

Sub-17 µm pixel FPA design has also been included 
in the analysis of ultra-low-cost PIR sensors for home 
security by an Australian company

The development of novel uncooled detectors is also 
continuing. The following novel uncooled technolo-
gies were reported on in this conference:

• A photomechanical imager (an array of bi-
material microcantilevers that are read out op-
tically) which was demonstrated as a Hostile 
Fire Indicator in the MWIR.

• A microbolometer based on single-crystal Si/
SiGe quantum wells in which 17 µm pixel 
structures were demonstrated.

• A novel read-out for thermopile focal plane 
arrays that modeling shows can compete with 
25 µm, 17 µm and 12 µm pitch microbolom-
eters in both NE∆T and thermal response time. 

Fig. 6. 2048 x 1536 uncooled VOx microbolometers 
with 17 µm pixel pitch on a 200 mm wafer. Fig. 7   Low-cost 320 x 240 SOI FPA.

Fig. 5 The difference of Gaussian response of a humming-
bird shows enhanced edge contrast as shown in the upper-right 
panel (input scene is in the upper-left). The zero-crossing image 
as shown in the lower-right image preserves the essential geom-
etries in the scene, but conveys the information in a 1-bit repre-
sentation. (Infrared imagery courtesy of the SE-IR Corporation, 
Goleta, CA)
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collection efficiency—product of quantum efficiency 
x photoconductive gain—for three of NASA’s QWIP 
vendors are illustrated in Fig. 10 at a temperature a 
few degrees below the planned operating temperature 
of 43 K. The QWIP arrays all were measured to have 
NE∆T values between 15 and 17 mK with the f/1.64 
instrument.

Type II superlattice FPAs provided an update on this 
rapidly advancing detector technology. Typical Type 
II superlattice FPAs have about 6x higher leakage  
(or dark) current compared to HgCdTe (Rule 7). The 
separation between the two detector materials perfor-
mance has been reduced in recent years from a signifi-
cantly wider margin however. Improvements in Type 
II materials are partly responsible for narrowing the 
performance gap, as illustrated in Fig. 11 that shows 
how the lattice quality has been improved, as X-ray 
rocking curve measurements show.

In a related area, researchers in Japan demonstrated 
improved passive and active Terahertz imaging by al-
tering a 320 x 240 VOx microbolometer for use as a 
Terahertz sensor. Figure 8 shows a passive Terahertz 
image that has been integrated over 64 frames and a 
subarray of 3 x 3 pixels.

Photon detectors

Photon detector presentations continued to report 
good progress across the spectrum of device technolo-
gies in sessions 5-7, 10, 12, and 16-19. 

QWIP and QDIP technologies reported new mile-
stones in development. QWIP activities are inspired 
by NASA’s plans to launch the LANDSAT Data Con-
tinuity Mission with QWIP detectors providing the 
LWIR sensors—see Fig. 9. This has focused develop-
ment on large format—512 x 640—broadband QWIPs 
in the spectral range of 10- to -13 µm. The spectral 

Fig. 8 Passive Terahertz image taken with an altered 320 
x 240 VOx microbolometer-based “Handy THz camera”.

Fig. 9 The Thermal Infrared Sensor (TIRS) focal 
plane showing three QWIP sensor-chip assemblies.

Fig. 10  Collection efficiency (CE) of QWIP 
FPAs from three NASA vendors as a function of 
wavelength for several bias values.
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Arrays of Type II superlattices of 1K x 1K have been 
demonstrated—see Fig. 12 for one from this confer-
ence—and a variety of barrier structures have been 
used to balance optical absorption and recombination 
mechanisms and for control of leakage currents.

Other Type II superlattice development efforts were 
described on precise inductively-coupled plasma 
(ICP) etching, dual band devices with reduced pixel 
size—see Fig. 13—growth on alternative substrates 
(GaAs), and the development of large, 4-inch GaSb 
substrates. Techniques for backside removal of the 
GaSb to eliminate parasitic absorption were reported 
as well.

A major issue in Type II materials has been the minor-
ity-carrier lifetime—typically measured in the range 

of about 75 nsec for MWIR materials and 20 nsec for 
LWIR-effective bandgaps—see Fig. 14—compared 
with 10 µsec/2 µsec for MWIR/LWIR HgCdTe mate-
rials. A possible explanation related to the higher LO 
phonon energy in InAs and GaSb— ~30 meV— com-
pared to HgCdTe with ~17 meV was presented.

Short wavelength infrared (SWIR) sensors continue 
to be under active development—see Fig. 15. A pro-
gram to combine a SWIR array with 10 µm pixels to-
gether with an uncooled LWIR array with 20 µm pix-
els was presented. Such a combination would allow 
sensor fusion of reflected and emitted light to cover a 
wide variety of situations that soldiers may encounter, 
including the ability to see laser beams and thermal 
signatures combined.

Wide SWIR dynamic range—120 db—is available 
with InGaAs arrays by operating the array in forward 
bias like a solar cell —the open-circuit voltage being 
generated by the photon flux. The open-circuit voltage 

Fig. 13 Dual-band MWIR/MWIR Type II super-
lattice pixels with reduced—30 µm—pixel size.

Fig. 12 Image taken with a 1K x 1K Type II 
superlattice FPA.

Fig. 14 Photoluminescence-decay measurements 
made on an LWIR Type II superlattice sample 
showing a lifetime of 31 nsec for the low-flux limit 
of photo-excitation.
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Fig. 11 X-ray crystal rocking curve data shows significant crys-
tal quality improvement as experience is gained in growing Type 
II SLS material 
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increases only logarithmically with the photocurrent. 
Such sensors are being proposed as an alternative to 
uncooled arrays for automotive applications such as 
extending the visibility range.

Pixel-level MEMs Fabry-Perot arrays were described 
with tuning in the SWIR band as illustrated in Fig. 16.

Progress in reducing the dark current and noise in 
dense arrays was reported. The trade-off in power re-
quirements for TE cooling vs. using SWIR illumina-
tors was also discussed. In addition to InGaAs SWIR 
detectors, other approaches were described based on 
MOVPE Type II materials and “black” silicon.

The conference keynote session described the require-
ments and technology needs for wide-area persistent 
surveillance sensors.

A half-day session was devoted to High-Operating 
Temperature (HOT) detectors—a hot topic for the 

past couple of years. Papers presented in this section 
covered a variety of detector material candidates, in-
cluding:

• MWIR Type II superlattices
• MWIR InAsSb xBn structures
• InAsSb alloys with special absorber structures
• Interband cascade photodetectors
• HgCdTe photodiodes
• Quantum dot (Qdot or QDIP) photodetectors
• InSb

Progress with detectors having majority-carrier bar-
riers is extremely active—see Fig. 17. The paper on 
Type II superlattices in this session reported designs 
that included such a barrier, as did other papers more 
specific to this approach. Barrier detectors have a po-

Fig. 15 Comparison of visible and SWIR imagery in atmospheric fog. 

Fig. 16 Tuning range of a MEMs Fabry-Perot 
structure from 1.9 to 2.4 µm with applied voltage 
noted above peaks.

Fig. 17 Image taken at 150 K with an nBn 640 x 512 array show-
ing an NE∆T of 20 mK. The dark spots on the hill are cows.
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tential advantage if the operating temperature is be-
low the cross-over between diffusion- and generation-
recombination-limited regimes. That cross-over point 
may vary from one material system to another, and 
within each material system as well, dependent upon 
the material quality and purity, minority-carrier life-
time, control of doping and bandgap gradients, etc. 

The winners in this category will need to be sorted 
out by investment, time, and experiments. The answer 
may also depend upon the specific details of the ap-
plication. Lattice matching to standard substrates may 
preclude barrier detectors from some applications if 
the wavelength response is limited to the shorter re-
gion of the MWIR band. Novel ideas including pyra-
mid absorbers—see Fig. 18—to enhance absorption 
in thin layers was discussed. The detector commu-
nity has less experience with technologies that have 
prospered in the laser field, such as cascade quantum 
structures. We shall see in future years how the cur-
rent results improve over time.

HOT results for traditional detectors—HgCdTe and 
InSb—were presented. Fig. 19 illustrates how NE∆T 
increases for a HgCdTe detector with increasing tem-
perature for two spectral MWIR bands. It was noted 

Fig. 18 Pyramidal absorbers on an InAsSb layer 
were structured to increase photon absorption.

that small-pixel arrays can generally be cooled more 
quickly and will operate with lower power than large-
pixel arrays in the same format. Additional HOT data 
is part of two papers in the HgCdTe detector session.

Active imaging technology presentations covered 
three materials capabable of producing avalanche 
photodiode (APD) devices:

• InSb
• InGaAs
• HgCdTe

• hole-avalanche devices
• electron-avalanche devices

The electron avalanche gain of a HgCdTe detector 
having a 3.1 µm cutoff as a function of bias is shown 
in Figure 20. The gain exceeds 100 at a bias of 12 V. 
Here the use of shorter cutoff material, compared with 
earlier results means that such an electron-avalanche 
detector would need less cooling than one with a cut-
off in the range of 4-5 µm. On the other hand, the lon-
ger cutoff material is better able to provide passive 

Fig. 19 NE∆T for two MWIR spectral bands—
noted—as a function of operating temperature.

Fig. 20 Gain as a function of bias for a HgCdTe e-APD 
having a spectral cutoff of 3.1 µm at 200 K.

Fig. 21 3D image of a ship (visible insert) made with a scanned 
linear array of hole-avalanche HgCdTe detectors.
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thermal imaging in addition 
to APD operation.

Figure 21 shows the 3D im-
age of a ship taken with a 
linear array of HgCdTe hole-
avalanche APDs in a 256 x 4 
scanned sensor. These APDs 
operate up to 1.5 GHz in a 
linear mode with no after-
pulsing effects providing sub-
nanosecond time resolution. 
The sensor has a TE cooler 
for temperature stabilization. Both InGaAs and hole-
avalanche HgCdTe can operate at room temperature 
in the eye-safe SWIR range of 1.5-1.7 µm, but cannot 
provide thermal imagery as well as APD operation.

The session on HgCdTe 
detectors began with a 
memorial for colleague 
Phillippe Tribolet—Fig-
ure 22—who tragically 
died in the fall of 2010, 
much too young. He will 
be missed by our infrared 
community.

Advances in HgCdTe detectors were reported in Ses-
sion 19. Very large format SWIR and MWIR arrays 
built with HgCdTe grown on 6-inch silicon substrates 
were described—4K x 4K—with 20 µm pixels—see 
Fig. 23. Even larger formats—8K x 8K—are expected 
in the near future. HgCdTe grown on silicon wafers 
has made this possible, but currently not for LWIR 
material which is more sensitive to the lattice mis-
match.

Progress and projections for reducing pixel size were 
presented—as shown in Fig. 24 above. This has led to 
large format MWIR FPAs with 15 µm pixels in a 1280 
x 1024 tactical format. Excellent imagery results for 
single and dual MWIR bands were shown—the dual-
band in a 640 x 512 format with 24 µm pixels and 20 
and 25 mK NE∆T, respectively—see Fig. 25.

The combination of GaAs substrates and MOVPE 
growth has also produced high quality MW/LW re-
sults in a 640 x 512 format with 20 µm pixels. Figure 
26 illustrates the NE∆T results for one of these FPAs. 
In Orlando, Selex demonstrated an extension of this 
technology to a larger format—860 x 480 with the 
same pixel pitch and NE∆T performance for 3rd Gen 

Fig. 24 Progress (solid line) and projections (dashed line) for reducing pixel size for MWIR 
(blue), LWIR (red), and dual-band FPA applications.

Fig. 23 Image of a 2K x 2K reflected in a 4K x 4K 
MWIR HgCdTe array grown on silicon.

Fig. 25 Imagery taken with a dual-band MW/MW array of 
HgCdTe on CdZnTe having 24 µm pitch in a 640 x 512 format.

Fig. 22 Phillippe Tribolet
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imaging applications. The HgCdTe-on-GaAs technol-
ogy also reported progress in MWIR HOT detectors, 
with impressive imagery shown in Fig. 27 at 160 K us-
ing a 640 x 512 format with 16 µm pixels. The NE∆T 
under these conditions was less than 18 mK.

Plans were outlined for dual-band 3rd Gen MW/LW 
technology development also using HgCdTe n-p-n 
diodes. Descriptions of a variant of the usual n-p-n 
structure were presented in two papers—see Fig. 28 
for one example. Another novel description was that 
of a dual-band FPA with a fish-eye lens system par-
tially integrated into the dewar.

Elevated dislocation densities are typically encoun-
tered when growing HgCdTe on alternative substrates 
such as Si or GaAs. A theory was presented to explain 
this effect. An example of this calculation on the I-V 
characteristics is shown in Fig. 29.

Cryocoolers

Session 15 covered cryocoolers. A great effort has 
been made to miniaturize the detector cryocoolers 
while retaining or improving the Mean Time To Fail-
ure—MTTF. A MicroCryogenic Cooler, MCC, of the 
Joule-Thomson type was demonstrated for tempera-
tures down to 200 K. MCCs using mixed refrigerants 
are very promising because they can require only a 
tenth of the input power of a corresponding TE cooler, 
and fill a tenth of the volume of a corresponding Stir-
ling cooler, as illustrated in—Fig. 30.

While looking into the future, the MCC presenters 
envisaged “invisible” cryocoolers which may revo-
lutionize future IR imaging systems. Potential addi-
tional size reductions of more than 10 times may be 
obtained by use of MEMS compressors. 

Fig. 26 Histograms of MW and LW band NE∆T measured on a 
HgCdTe-on-GaAs array with 20 µm pixels.

Fig. 27 Image taken at 160 K with a HgCdTe-on-GaAs FPA 
with 16 µm pixels.

Fig. 28 Doping structure of a novel n-p-n dual-band 
HgCdTe pixel structure.

Fig. 29 Illustration of the impact of dislocation density 
on the reverse-bias characteristics of a HgCdTe diode.
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A novel miniature cryocooler was demonstrated. The 
reduction of its dimensions was achieved by using 
moving magnet technology and omitting flexure sus-
pension in split Stirling linear coolers. 

Recent trends in developing mini- and micro-satellites 
for relatively inexpensive missions have prompted at-
tempts to adapt leading-edge tactical cryogenic cool-
ers for suitability in the space environment. The pri-
mary emphasis has been on reducing cost, weight and 
size. Practical and theoretical aspects of adaptation of 
a microminiature tactical split Stirling cryogenic cool-
er to the space application were described. The opera-
tion of the cooler may give rise to vibrations which 
will degrade the IR imager’s functionality. The au-
thors outlined, in a companion paper, their techniques 
for reducing these vibrations.

Fig. 30 MCC compared with thermoelectric and Stirling cool-
ers for temperatures down to 200 K. 

Several coolers of the rotary type were present-
ed. Among these were a sub-micro cooler with fast 
cooldown and low jitter, one that is particularly suited 
for intermediate temperatures of 90 to 150 K., and one 
with a redesigned bearing resulting in doubling of the 
MTTF.

Paul R. Norton

Bjørn F. Andresen

Gabor F. Fulop
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