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ABSTRACT

Laser-plasma accelerators (LPAs) are known to intrinsically produce broad-bandwidth X-rays through the trans-
verse motion of the accelerated electrons in the plasma wakefield. Due to the compact dimensions of the wakefield
structure, this motion results in betatron radiation emission from a small point-like source (of order 1 µm in
transverse size). Such a small source size enables high spatial resolution single-shot phase-contrast imaging, even
for broad photon-energy spreads, simply by propagating the X-rays through a sample and onto a two-dimensional
detector. In this manuscript we study, through simulations, the possibility to extend the resolution to the sub-
micron regime. We find that the optimum geometry for <15 keV photons demands short (few-mm) drifts from
source-to-sample, a photon flux of order 109 photons/shot, and the necessity to take the longitudinal source
dimension into consideration. The presented framework behind the simulations will guide future betatron source
development. The same expressions are also valid for other point-like LPA radiation sources such as Thomson-
and Compton-scattered radiation.

Keywords: X-rays, compact light sources, laser-plasma acceleration, phase-contrast imaging

1. INTRODUCTION

Betatron motion of electrons inside the laser-plasma accelerator,1 resulting in the emission of betatron X-rays,
has been extensively reported on in high-profile papers over recent years.2–11 The betatron spectrum has an
intrinsically broad bandwidth, extending up to the critical photon energy Ec, before dropping off exponentially.
Ec scales3 with the electron Lorentz factor γ, the plasma density n0, and the transverse beam size rb, as
Ec[eV ] = 5×10−21γ2n0[cm−3]rb[µm]. Betatron photon fluxes of over 1010 photons per shot have been recorded,9

strongly depending on the laser, plasma, and electron injection parameters. Phase contrast imaging of LPA
betatron emission is one of the key promising applications. This is due to the few-femtosecond pulse duration of
the LPA electrons and betatron photons, the strong single-shot fluxes, but also the small µm-size transverse size
of the betatron source. Phase-contrast imaging, performed in a lens-free and optics-free setup (drift from source
to sample, and from sample to detector), carries a high degree of spatial coherence due to this small source size.
This has resulted in milestone demonstrations of single-shot few-fs LPA betatron imaging of biological, medical,
and dense matter structures, at few-µm spatial resolution.8,9, 11

In this manuscript we will explore through simulations the possibility of enhancing the spatial resolution ca-
pabilities of LPA betatron phase-contrast imaging systems to sub-µm. This is of specific interest to bio-imaging,
where macro-molecules or clusters can be as large as several 100s of nm. In terms of overcoming one key condition
for sub-micron resolution imaging, namely the transverse source size, there have been measurements that sup-
ported such capabilities. For example, Ref. [6] mentioned a 0.1 µm betatron source size, while Ref. [12] presented
the electron beam itself to have a transverse source size of 0.6 µm. Furthermore, simulations predict two-pulse
two-color optical injection techniques can deliver small source size electron beam.13 To address the geometri-
cal and photon-flux considerations for sub-micron resolution imaging, we developed a simulation framework for
phase-contrast imaging based on analytical expressions presented in Ref. [14] and citations therein. While our
expressions are valid for an arbitrary photon energy distribution, we will use a 0-15 keV source as example, easily
achievable with an LPA electron beam energy of order 200 MeV. The role of the phase-contrast setup geometry,
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the photon energy spread, resolution, and longitudinal source size will be presented, providing the framework for
others to tailor their betatron imaging model to their specific available parameters. Note that the same set of
equations presented here are also valid for another point-like LPA radiation source, namely Thomson-scattered
radiation (also referred to as Compton-scattered radiation), where the compact electron beam interacts with a
counter-propagating laser pulse to radiate well-directed high-flux hard X-rays.15–18

2. SIMULATION FRAMEWORK

In this manuscript, an arbitrary energy distribution f(~ω) of photon energy ~ω will be considered as photon
source. The number of photons dN/d(~ω) per energy band d(~ω) can be calculated through dN/d(~ω) =
f(~ω)/(~ω). The total number of photons Nφ in the beam can be found by integrating dN/d(~ω) over the
radiation spectrum, namely Nφ =

∫
~ω d(~ω)f(~ω)/(~ω). However, it can be desirable, especially for broad-

bandwidth photon sources, to express the radiation pulse in terms of an equivalent photon number at fixed photon
energy. For example, the photon energy distribution will have a mean energy, a median energy, or a critical energy
Ec, and the photon pulse can thus be expressed in terms of number of photons of that energy. In case of using the
mean energy, the equivalent photon count Nφ,mean can be found through Nφ,mean =

∫
~ω f(~ω)d(~ω)/(~ωmean),

with (~ωmean) =
∫
f(~ω)d(~ω)(~ω)/

∫
f(~ω)d(~ω).

In order the simulate or predict the single-shot X-ray image in the source-drift-sample-drift-detector geometry,
at first mono-chromatic photons of photon energy ~ω are considered, yielding the image contribution at that
energy. Then, the image composition from the full spectral distribution of the photon source will be stitched
together.

We start by presenting an expression for the sample. The index of refraction of any material can be expressed
as n(~ω) = 1 − δ(~ω) + ıβ(~ω), with δ the real part defining the phase velocity and phase accumulation, and
β the imaginary part representing sample absorption. We will treat the photon beam as propagating in the z
direction, and the sample as having a three-dimensional index of refraction distribution n(x, y, z). For simplicity,
the sample is assumed to be thin along z (like a film, foil, droplet, or virus particle). Following Ref. [14], the
sample can thus be approximated as a two-dimensional structure, positioned at z = 0, inflicting a correction to
the incoming electric field profile Ein(x, y) of

Eout(x, y, ~ω) = Ein(x, y, ~ω) exp

(
−ı
∫
z′
δ(x, y, z′, ~ω)

2π

λ
dz′
)

exp

(
−
∫
z′
β(x, y, z′, ~ω)

2π

λ
dz′
)
, (1)

with λ = 2πc/ω the photon wavelength, and where integration along z′ accounts for projection of the three-
dimensional sample on the two-dimensional (x, y) plane.

As an arbitrary example of a potential sample, we propose to represent the sample as an ensemble of uniform
spheres (such as several virus particles/spheres inside a water droplet/sphere), with each sphere m having a radius
Rm, centroid location (xm, ym, zm), and material index δm(~ω) and βm(~ω). In case there is an overlap between
two spheres (as is the case for a virus particle inside a water droplet), the index of refraction of the smaller volume
(the virus particle) should be defined as relative to the larger volume (the droplet). Geometrical consideration
yields that the z-integrated thickness of each sphere is 2

√
R2
m − (x− xm)2 − (y − ym)2. The spatial electric

field distribution Eout(x, y, ~ω) of the photon beam at the sample exit can then be derived from Eq. (1) to be
Eout(x, y, ~ω) = Ein(x, y, ~ω) exp [−ıΦ(x, y, ~ω)], with

Φ(x, y, ~ω) =
∑
m

2
√
R2
m − (x− xm)2 − (y − ym)2

2π

λ
[δm(~ω)− ıβm(~ω)] . (2)

The next step is to calculate how this field profile Eout(x, y, ~ω) at the sample exit plane z = 0 propagates
from the sample to the detector plane at distance R2, yielding Edetector(x, y,R1, R2, ~ω), with the distance from
the point source to the sample labeled as R1, see Fig. 1. Again we will follow the approach presented by Ref. [14],
where, accounting for the (point)source-sample-detector geometry, the effective propagation distance from sample
to detector is not R2, but is defined as zeff = (R1R2)/(R1 +R2). In fact, for common geometries where R2 � R1,
one can find that zeff ≈ R1. For example, when the detector is placed R2 =2 meter from the sample, the effective
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Figure 1. Schematic of the phase-contrast imaging geometry. The photon source is considered to be a point-like source
of transverse size σs, positioned at distance R1 from the sample. The sample is placed at z = 0, with the detector
plane at distance R2 from the sample. To account for the diverging photon source geometry, it was derived14 that the
effective propagation distance from the sample to the detector can be expressed as zeff = (R1R2)/(R1 + R2), which can
be approximated by zeff ' R1 for geometries where R2 is large.

propagation distance zeff to be used is only zeff = 9.95 mm for a betatron point source R1 =10 mm upstream
of the sample. We will also follow the approach of switching from the transverse coordinates (x, y) to the
transverse spatial frequencies (u, v). The spatial Fourier transform of Eout(x, y, ~ω) at the sample exit plane will

thus be rewritten as Ẽout(u, v, ~ω). In the spatial frequency space, propagation over a distance of zeff is best
aided through introduction of a variable χ(R1, R2) = πλzeff(u2 + v2) = πλR1R2(u2 + v2)/(R1 + R2). The field
distribution at the detector plane R2, in the spatial-frequency domain, can be derived to be14,19

Ẽdetector(u, v,R1, R2, ~ω) = exp

[
i2πR1R2

λ(R1 +R2)

]
exp [ıχ(R1, R2)]Ẽout(u, v, ~ω)gsource(u, v), (3)

with gsource(u, v) incorporating the effect of a non-zero transverse source size of the photon beam. The finite
source size σs will result in spatial frequencies (u, v) > σ−1

s at the sample to be washed out, resulting in loss of
signal and loss of resolution. For a Gaussian distribution of the transverse photon source with size σs, we can
calculate the cut-off spectral source-size function gsource(u, v) to be

gsource(u, v) = exp
[
−π2σ2

s(u2 + v2)
]
. (4)

Note that the field distribution at R2 in absence of a sample (δm → 0, βm → 0, σs → 0), is

Ẽdetector,0(u, v,R1, R2, ~ω) = exp

[
i2πR1R2

λ(R1 +R2)

]
exp [ıχ(R1, R2)]Ẽin(u, v, ~ω). (5)

At detector plane R2, the spatial distribution of the electric field can be calculated14 to be
Edetector(X,Y,R1, R2, ~ω), which is simply the inverse Fourier transform of Ẽdetector(u, v,R1, R2, ~ω) followed by
replacing (x, y) with (X,Y ), defined as X = xR2/R1 and Y = yR2/R1, to account for the sample-to-detector
magnification R2/R1. The intensity distribution at the detector plane is defined as Idetector(X,Y,R1, R2, ~ω) =
|Edetector(X,Y,R1, R2, ~ω)|2. Similarly, the sample-out intensity distribution is Idetector,0(X,Y,R1, R2, ~ω) =
|Edetector,0X,Y,R1, R2, ~ω)|2.
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To turn the intensity distribution Idetector(X,Y,R1, R2, ~ω) into a photon number distribution
d3IN,detector(X,Y, ~ω)/d(~ω)dXdY , we want to ensure that the total number of photons in the photon energy
band d(~ω) in the sample-out case matches the photon number at the source dN/d(~ω). The corrected spatial
distribution at the detector, in units of number of photons per area dXdY per bandwidth d(~ω), can thus be
expressed as

d3IN,detector(X,Y, ~ω)

d(~ω)dXdY
=

dN

d(~ω)

Idetector(X,Y,R1, R2, ~ω)∫∫∞
−∞ dX ′dY ′Idetector,0(X ′, Y ′, R1, R2, ~ω)

. (6)

For laser-plasma-driven betatron sources, we now include one level of complexity, namely the fact that the
emission source is better represented as a line of length L, rather than a point-like source. For example, the
emission could occur over several betatron periods inside the plasma. This effect has been commented on in recent
manuscripts, such as Ref. [10], but no quantative description has been provided to this point. As a simplified
model, we approximate this effect by considering the betatron source to be M discrete emission point sources
lined up in a row, each with distance R1,M from the sample, and each with photon flux distribution dNM/d(~ω)
such that

∑
M dNM/d(~ω) = dN/d(~ω). In this case, the spatial photon distribution at the detector, following

Eq. (6), becomes

d3IN,detector(X,Y, ~ω)

d(~ω)dXdY
=
∑
M

dNM
d(~ω)

Idetector(X,Y,R1,M , R2, ~ω)∫∫∞
−∞ dX ′dY ′Idetector,0(X ′, Y ′, R1,M , R2, ~ω)

. (7)

Consideration of the longitudinal length L of the betatron source is important in the regime L ∼ R1, when there
are considerable differences in the distance to the sample from the closest and the further betatron emission
contributors.

The last step in this simulation framework description is the inclusion of the camera pixel dimension and
photon statistics. The CCD camera has Nx ×Ny pixels, with index (i, j), each with physical size ∆X and ∆Y .
This yields a a spatial axis calibration Xi = ∆X(i−1/2)−∆XNx/2 and Yj = ∆Y (j−1/2)−∆Y Ny/2. For each
pixel (i, j), the spatial photon count distribution d3IN,detector(X,Y, ~ω)/d(~ω)dXdY should be integrated over
dX following the limits (Xi−∆X/2) to (Xi+∆X/2), and over dY following the limits (Yj−∆Y/2) to (Yj+∆Y/2).
The resulting spectrally-differentiated CCD flux distribution will be labeled as dIN,detector(Xi, Yj , ~ω)/d(~ω). The
final steps are (1) to introduce a statistical noise14 on every CCD camera pixel (i, j), (2) adding a wavelength-
dependent conversion factor C(~ω) from photon to CCD counts, and (3) to consider the photon beam over the
full spectral distribution, which can be achieved by integrating dIN,detector(Xi, Yj , ~ω)/d(~ω) over the photon
energies that are present. The noise is incorporated by adding or subtracting a photon correction number of
hnormal×

√
dIN,detector(Xi, Yj , ~ω)/d(~ω) for each pixel (i, j), with hnormal a randomly chosen value following the

standard normal distribution of mean 0 and standard deviation 1. This results in the following expression for
CCD counts per pixel

Icounts,detector(Xi, Yj) =

∫
~ω
d(~ω)C(~ω)

[
dIN,detector(Xi, Yj , ~ω)

d(~ω)
+ hrandom

√
dIN,detector(Xi, Yj , ~ω)

d(~ω)

]
. (8)

A good intuitive picture can be obtained regarding the interplay between the spatial frequencies in the
sample, the photon energy of incoming radiation, and the distances R1 and R2, by following the analysis of
Refs. [14,19] in the weak-object approximation. It was derived there that the intensity contrast resulting from
the real part of the index of refraction (the phase term) develops as ∼ sinχ, where χ was previously introduced
as χ = πλ(u2 + v2)R1R2/(R1 + R2). One can see that at R2 = 0 → sinχ = 0, highlighting that the phase
imprint by the sample has not yet translated into an intensity variation. The maximum intensity contrast from
the sample phase modulation occurs at χ = π/2 (and additional integers of π), which in the regime R2 � R1

translates into an optimum sample source-sample separation of

Ropt
1 =

1

2λ(u2 + v2)
. (9)

Thus, if one aims to resolve a spatial feature of size σ, such that (u2 + v2) ' 1/σ2, it can be derived that the
ideal position from source to sample is Ropt

1 = σ2/(2λ). For example, a σ = 10 µm feature would ideally require
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Ropt
1 = 12 cm for 3 keV (λ=0.41 nm) and Ropt

1 =1.2 m for 30 keV (λ=0.041 nm) radiation. For a σ = 1 µm
feature we retrieve an optimum Ropt

1 = 0.12 cm for 3 keV and Ropt
1 =1.2 cm for 30 keV photons. Note that the

same analysis as above can be pursued for the imaginary index of refraction by the sample (yielding absorption),
except that the intensity contrast now develops as ∼ cosχ. As expected, already at R2 = 0 (where χ = 0) there
is an immediate intensity modulation, and this maximum is repeated at integers of π. Keep in mind that a
typical sample is made up of a wide range of spatial frequencies, and each spatial frequency is transformed into
an intensity modulation at its own contrast transfer function (its own imaging efficiency).

3. SIMULATIONS

To provide insight into simulated betatron phase-contrast images, especially in the context of sub-micron reso-
lution, we will consider a water droplet example containing two embedded virus particles. The water droplet is
approximated as a uniform-density sphere of radius 20 µm, centered at (x = 0, y = 0), with a tabulated X-ray
index of refraction20 of

log10 (δwater) = −3.0− 2.1× log10(~ωkeV − 2.7), log10 (βwater) = −3.2− 3.7× log10(~ωkeV − 2.7). (10)

The two virus particles will be approximated as a uniform sphere of radius 200 nm, one centered at (x = 0, y = 0)
and the other at various separation distances, with the index of refraction being different from water by ∆δvirus

and ∆βvirus. For example, a water droplet with a virus particle that is optically identical to water would be
accounted for as a uniform droplet of index (δwater, βwater) and a relative virus contribution of ∆δvirus = ∆βvirus =
0. For a virus particle with an index identical to vacuum (thus effectively equivalent to putting a vacuum bubble
inside the droplet), we would use ∆δvirus = −δwater and ∆βvirus = −βwater. In general terms, for a virus ×p
times as optically dense as water, we would define the ensemble as an uniform water droplet of (δwater, βwater)
with superimposed virus particles of index of ∆δvirus = (p− 1)δwater and ∆βvirus = (p− 1)βwater.

As an approximate LPA betatron imaging example, we will define the X-ray spectrum f(~ω) to be peaked at 3
keV, with a Gaussian width of 5 keV (truncated at 0 keV), see the blue curves in the top row of Fig. 2. While the
betatron spectrum, just like Thomson- or Compton-scattered radiation, could more accurately be described with
a critical-energy-based synchrotron asymptotic limit spectrum,5 our choice of Gaussian spectral approximation
provides similar qualitative spectral features. In our example, loosely resembling betatron radiation from 200
MeV electrons and a LPA plasma density of 5× 1018 cm−3, the mean value of the photon flux is (~ωmean)=5.4
keV. In units of 5.4 keV photons, the full betatron pulse contained 3.2 × 1010 such photons. The source size
was defined as having a Gaussian width of σs = 0.1 µm. Embedded in the 20-µm-radius water sphere, the
two 200-nm-radius virus spheres are separated horizontally by 0.7 µm, and are defined to have an index of
refraction twice of water (p = 2). The CCD has pixels of 40 µm by 40 µm in size. The distance source-to-
sample was chosen at R1 = 2 mm, and the distance sample-to-detector at R2=1 m, thus yielding a magnification
of R2/R1 = ×500. For simplicity, we used the photon-to-count conversion factor to be C(~ω) = 1, although
one could easily expand this to a more realistic function including the manufacturer-supplied photon-to-counts
conversion and the photon-capture quantum efficiency.

The simulation results are shown in Fig. 2, for individual spectral bands in plots (a), (b), and (c), and for the
full spectrum in (d). For the choice of geometry and spectral distribution, and considering a flux of 3.2 × 1010

photons, we can observe that the sub-micron virus particles are well-observable, and well-distinguishable. The
water sphere itself is dominated by the sharp gradients at its edge, and we can observe both diffraction effects
as well as absorption [especially at <4 keV in Fig. 2(a)]. The virus particles are least sharp at the lower photon
energies (as expected since χ � π/2 ), while the amplitude- and phase-induced contrast in counts is stronger
at such energies, as expected from Eq. (10). In fact, when the photon energy is too low, the phase-shift and
absorption through the sample becomes so large that the overall transmission drops towards zero, forcing use of
higher photon energies.

To examine the signal-to-noise contrast in the example shown in Fig. 2, we repeated the simulations at four
levels of photon flux, expressed in units of 5.4-keV photons, namely 3.2 × 1011 photons in Fig. 3(a), 3.2 × 1010

photons in Fig. 3(b), 3.2× 109 photons in Fig. 3(c), and 3.2× 108 photons in Fig. 3(d). Based on the choice in
drift distances and 25-mrad divergence, the number of photons inicident per per pixel varies from approximately
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Figure 2. (a-d) Simulation results of a water droplet with two embedded virus particles being imaged onto a CCD camera.
At a magnification of R2/R1 = ×500, the 20 µm radius water droplet will appear with diameter 10 mm. Figures (a), (b),
and (c) show the image contribution of several segments of the photon spectrum (see red curves in top row), while Fig.
(d) displays the full integrated image. The bottom row reveals the CCD counts per pixel for a zoomed-in area at 8x8mm
(16x16 µm at the sample), showing the two virus particles. At higher photon energy the virus intensity imprint becomes
weaker, but with better spatial resolution.
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Figure 3. For the same simulation geometry of Fig. 2, this figure displays the simulated images for four different flux
scenarios, expressed in units of 5.4-keV-equivalent photons: (a) 3.2× 1011 photons, (b) 3.2× 1010 photons, (c) 3.2× 109

photons, and (d) 3.2 × 108 photons. In this example, once the flux drops to < 109 photons, the virus particles become
hardly observable.

from 3 × 105 in (a) to 3 × 102 in (d). Already in Fig. 3(c) the two virus particle are barely visible, and they
are buried in the noise at 3.2 × 108 photons in Fig. 3(d). A flux requirement of 109 photons in this energy
range therefore seems like a reasonable detection threshold. Note that averaging or integrating of LPA betatron
shots could be considered (for example 107 photons per shots integrated over 100 shots), but the stability of the
source-sample-detector line would have to be actively stabilized. If any of these three components jitters beyond
control (for example, the transverse source location jitters by 1 micron), the superposition of images would not
yield the desired result.

As was introduced in Sec. 2, the LPA betatron source is intrinsically based on photons emitted by the
electrons performing a transverse oscillation along a longitudinal path. With the betatron period of order 100
µm, and with typically several betatron periods contributing to the photon source, the longitudinal source line
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Figure 4. (a) Simulated detector count distribution for a mono-chromatic 15 keV photon source originating from a point
source. The water sphere edges and two virus spheres are clearly observable, as expected from a 1012 photons/shot flux.
(b) Detector distribution for the same photon flux, but now with the source distributed over a 0.4mm line source. The
longitudinally extending photon source leads to radial streaking of off-axis features at the sample, such as the water sphere
edge and the off-axis virus particle.

length could become relevant when of equal size to the distance source-to-sample R1. To study the impact of
the line source, we simplified the photon source to be a mono-chromatic source of 1012 photons at 15 keV. The
same water sphere and virus particles as before are considered, except that the second virus particle will be
positioned off-axis at (x, y) = (6, 6) µm. Figure 4(a) displays the simulated detector image in the assumption
of a point source at R1=2 mm. As in previous figures, both the water sphere outline as well as the virus
spheres are clearly observed. Figure 4(b) shows the same sample, but now with a photon source with a length
of 0.4mm, extending from R1=2.0 mm to 2.4mm. The integrated photon flux is kept the same. One can observe
that while the on-axis virus particle remains unaffected, the off-axis one is smeared out into a streak pattern
(pointing towards the origin). Also, the edge of the water sphere is no longer observable. We want to emphasize
two contributors to these effects: (1) since there now is no singular distance R1, the χ parameter that dictates
contrast amplitude and spatial resolution is now different for the various R1 components, resulting in a modified
image. But more importantly, (2) the magnification R2/R1 will be different for the various source contributors,
leading to a superposition of images each at their own magnification. It is important to note that not only is
the projected size of each spatial feature a function of the varying ratio R2/R1, but also it’ off-axis position on
the detector plane (a x offset at the sample results in R2/R1 offset at the detector). This means that off-axis
sample features will be smeared out, and streaked along the axis to the origin, as observed in Fig. 4(b).
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4. CONCLUSION

In conclusion, in this manuscript we presented an overview of the equations that can be applied to model
phase-contrast imaging with LPA betatron X-rays (see also Sect. 2-3 [21]). The role of the sample 
and detector placement, the photon spectrum, the transverse source size, the spatial frequencies making up
the sample, the photon statistics on the detector camera, and the longitudinal extent of the photon source,
were all considered. Simulations were carried out to highlight the approach and necessary parameters to
realizing sub-micron spatial resolution.

The sub-micron imaging (in the simulation example presented here, made up of two 200-nm-radius virus
particles inside a water droplet) demands a photon spectrum in the 5-10 keV range, and a source position R1 only a
few mm from the photon source. For these parameters, the photon flux should be at least of order 109 photons per 
image. Note that multi-shot integration and averaging can relax the betatron flux parameters, providing that
fluctuations in transverse source location are kept at acceptable level. For multi-micron resolutions these
requirements are significantly relaxed. It was also found that due to the short source-to-sample distance, the
longitudinal extent of the photon source can lead to considerable image smearing effects, dependent on the
off-axis location of the sample features.

The above considerations are aimed to help guide the choice of phase-contrast imaging geometry. Especially
with the aim of achieving sub-micron resolution, the conceptual approach presented here can help define the
specifications for novel LPA injection mechanisms as betatron source, such as two-pulse two-color ionization.13

Note that the same conceptual framework presented here is also valid for other point-like LPA radiation sources
such as Thomson- and Compton-scattered radiation.
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