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Abstract

Metal objects in the field of view cause artifacts in the image, which manifest as dark and bright streaks and degrade the
diagnostic value of the image. Standard approaches for metal artifact reduction are often unable to correct these artifacts
sufficiently or introduce new artifacts. We propose a new data-based method to reduce metal artifacts in CT images
applying conditional Generative Adversarial Networks to the corrupted data. A generator network is applied directly to the
corrupted projections by the metal objects to learn the corrected sinogram data. Further, two discriminator networks are
used to evaluate the image quality of the enhanced data from the generator. The method was initially developed based on a
supervised approach. However, there is usually no ground truth for actual clinical data without artifacts, which is needed to
train the networks. Therefore, the method was further improved to train an unsupervised network, i.e., without the ground
truth. In addition the input data, the neighboring slices and the stochastic components of the image are included using
the latent space representation of the data. The results show that the trained generator network can reasonably replace the
missing projection data and reduce the artifacts in the reconstructed image.

I. INTRODUCTION

ARTIFACTS are particularly apparent in computed tomography (CT) when high-density objects like metal implants
or surgical instruments are present in the field of view. Various metal artifact reduction (MAR) methods have been

proposed since the first publications on MAR [1]. Projection completion methods are often used due to their simplicity
and fast application. They treat the data affected by metal objects as missing image information and replace them with
synthetic data, usually obtained by interpolation [2]. A significant drawback of this method, especially in inhomogeneous
image regions, is the loss of information in the metal trace. An alternative to this approach are iterative methods [3], yet
they have the disadvantage of high computation times, especially for large 3D images. Recently, neuronal networks have
been used to correct corrupted data [4], [5]. To train the networks effectively, the definition of a suitable loss function
is crucial. Still, loss functions are often designed to optimize specific, quantifiable image parameters, even if a selection
of image properties to describe good image quality is usually hard to define. However, instead of specifying parameters
for a good image quality, it is possible to use an additional network. Besides the so-called generator network, which
generates the improved projection data, a second network can be trained, the discriminator, to distinguish the actual
projections from the synthetic data.
The first results using this method have already been published and showed the potential of the new method on the
reduction of artifacts in the image compared to conventional approaches [6]. One major drawback of the published
method, however, is the use of ground truth data to train the networks.
Prajot et al. propose a model for image inpainting, which allows learning the distribution of reconstructed images in a
completely unsupervised setting by integrating the stochastic component that introduces an explicit dependency between
this component and the generated output in the learning process [7]. We further developed this approach and incorporated
it into our previous work. Different from Prajot’s approach, it can be assumed that additional information is available in
the neighborhood of the corrupted metal projections. This information can be used in the training process to get more
realistic predictions from the generator network.
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II. METHODS

To train the networks, a combination of different loss functions is used. In the objective function

G∗ = arg min
G,E

max
D1,D2

LGAN(G,D1) + LGAN(G,D2)+

λzL
z(G,E) + λyL

y(G,D1, E) (1)

several networks interact with each other. For the training process, the loss function is minimized by the generator G
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Fig. 1: Schematic representation of the used network architectures.

and the encoder E and maximized by the discriminators D1 and D2. No access to the metal-free projection data is
usually available for the networks training. This is especially the case if the networks are to be trained on actual clinical
data. Hence, in the first part of the loss function, the output data of the generator network are not used directly. Instead,
a binary mask of the metal trace is first applied to the generated data using a function F , allowing the output data to
be compared with the original input data. This is realized by applying an adversarial loss function

LGAN(G,D1) = Ey[log(D1(y))]+

Ey,m,z[log(1−D1(F [G(y, z) + y,m]))] (2)

in which the generator and the first discriminator D1 compete against each other. Here, both networks are optimized
based on a Min-Max game over the expectation values E of the input data y and the masked output data of the generator.
In addition to the incomplete or corrupt sinogram sections, there are also sections without the influence of a metal object.
By searching for slices in the image in front of and behind the metal trace, these sections can be used as a reference
for another discriminator network D2. In the second part of the loss function, again an adversarial loss is used in which
the generator and the second discriminator compete against each other. The loss

LGAN(G,D2) = Ex∗ [log(D2(x∗))]+

Ey,m,z,x∗ [log(1−D2(x∗, G(y, z)))] (3)

is calculated now over the expectation values E of the input data y and the reference data x∗ from the neighbor slices
to integrate the information from the uncorrupted projection data into the learning process. In both parts of the objective
function, the generator receives the incomplete sinogram data and the corresponding metal trace as an input. Using a
two-stage architecture consisting of a coarse and a fine network [8], the generator generates an output image that is
used as an input to the discriminator networks. Each discriminator network, a binary classification network, assigns a
probability between [0, 1], indicating whether the data are real or artificially generated compared to the original input data
or the data from the neighbor slices, respectively. The structures of the generator and discriminator network architectures
are represented in Figure 1. To stabilize the training process, the loss is extended by two complementary losses, which
help to enforce the dependency on the stochastic component weighted by the parameter λ. First, an encoding z-loss is
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used to force the generator to use information from the stochastic component z from the latent representation of the
given data and the masked output data of the generator network by adding

Lz(G,E) = Ey,m,z ∥z − E(F [G(y, z) + y,m]))∥2 (4)

to the objective function. However, as shown in [9] and [10], this loss exhibits a “stenography behavior” and is not
sufficient alone to stabilize the network training.
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Fig. 2: Schematic representation of the used network interactions. The input data y are given together with a binary mask
m and the latent representation into the generator G. The output data x̃ are then used as an input to the discriminator
D1, by applying as masked function F , and the discriminator D2. Additionally, the masked output data ỹ are given
again into the generator together with the latent representation z̃ and the binary mask. The output ŷ of the second pass
is given into D1, and an adversarial loss is calculated together with the MSE-error to the original input data. Further,
both latent vectors z and z̃ are used to calculate an MSE-loss to update the generator and encoder network.

Therefore, an additional loss function, the encoding y-loss, is used. Here, the output data of the generator ỹ are not used
directly but are given after the application of the function F , again into the generator. The masked output data of the
second pass are then compared again with the original input data y by calculating

Ly(G,D1, E) = Ey[log(D1(y))]

+ Eỹ,z̃[log(1−D(F [G(ỹ, z̃) + ỹ,m]))]

+ Ey,z̃ ∥y − F [G(ỹ, z̃) + ỹ,m]∥2 (5)

using an MSE-loss to constrain G(ỹ, z̃) to be close to y and let their distribution be similar via an adversarial loss.
Figure 2 shows the interaction between the four networks and the before described realization of the calculated loss
functions for the network training.

III. EXPERIMENTS

Simulated data from a software phantom [11] with varying parameter settings were used to train and test the networks.
Objects with different shapes were inserted in 120 different data sets at random positions. Using simulations for 3D
cone-beam CT, the metal affected projection data were generated. In the image domain, the metal objects were segmented
and projected forward to obtain the metal trace, which is used to remove the metal corrupted data. The generated data
were divided into training (90), validation (15), and test (15) data. To generate more training data and data with a higher
variation, image sections of 128 × 128 were used instead of the full 3D sinograms. Training was performed using the
training parameters listed in table I.
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TABLE I: training parameters

Parameter Value

number training data 183 000
number validation data 31 000
batch size 32
number epochs 250
learning rate 1 · 10−5

IV. RESULTS

After successfully training the networks, the generator network can be applied to the test data. As shown in Figure
3, the network is able to reconstruct the missing data from the input data consisting of the data with the missing metal
trace and the binary mask. Compared to the ground truth, hardly any differences can be seen.

Fig. 3: Example data from the test data set completed by the generator network.

In the left part of Figure 4, an example slice from a completed 3D sinogram from the trained generator network is
shown compared to the original input data above. Thereby, the artificially generated data by the generator network can
barely be distinguished from the real surrounding data, making it difficult to detect the previous existing metal trace.
The right side of the figure shows the resulting reconstruction obtained by an FDK reconstruction compared to the
reconstruction from the original metal inserted data. Compared to the original data, it can be shown that the presence
of artifacts could be reduced significantly by applying the generator network.
In Figure 5a, the results of the generator network are shown compared to a linear interpolation for cylindrical hollow
objects, which the network had not seen yet in the training process. It can be shown that the network, in contrast to
the interpolation, is able to reconstruct the inner structures of these kinds of objects. The mean squared error (MSE)
between the reconstructed images and the ground truth was calculated on the test data set for validation. As a result, the
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Fig. 4: Data before (top) and after application of the network (below).

(a) Generator results (top) compared to NMAR (below) for a
cylindrical hollow object. (b) Calculated MSE values.

Fig. 5: Reconstruction results of the generator and the ground truth compared to NMAR and linear interpolation.

network was able to learn most of the missing structures, but some streak artifacts remain visible in the reconstructed
image (Figure 5b).

Compared to linear interpolation, the average MSE value overall test images is recognizably lower with 7.7 · 10−9

versus 1.0 · 10−8 . As well compared to the normalized metal artifact reduction (NMAR), the average MSE value is
slightly smaller with 7.7 · 10−9 versus 7.9 · 10−9 .

V. DISCUSSION

The developed method shows the first promising results on the simulated test data set. However, a detailed study of
the influence of different training parameters is still missing. In particular, the weighting of the individual components
of the loss function could further improve the training results.
One of the next steps is the integration of actual clinical data into the training process of the networks. Here, both the
influence of different acquisition geometries on the network training, as well as the used resolution should be investigated.
Increased or decreased resolution could lead to the necessity of adjusting the patch size for training the networks. Also,
a validation method must be developed that is applicable to actual clinical data where, unlike for the simulated data,
the ground truth is not available.
Further, the corrupted data should be integrated into the training process, as there might be more information about the
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image structures near the metal object available. One way to realize this is to replace the binary mask as an input of the
network with the original data of the metal trace. Here, for example, a weighting depending on the position would also
be conceivable, which could be integrated into the network convolution. Besides the integration of the original data, it is
also possible to take advantage of the fact that 3D data are available so that the input data used as well as the networks
can be adapted to 3D.

VI. CONCLUSION

The results demonstrate that the generator is able to replace the missing image information in the sinogram and reduce
a vast number of artifacts in the reconstructed image. Furthermore, by developing a method to train the networks without
using any ground truth, the networks can be applied to real clinical data in the next step without the need for major
modifications. In the future, the corrupted projection data should be used as an input of the generator network instead
of using the binary mask of the metal trace. The network should be able to use this information from the metal trace
to avoid introducing false image structures.
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