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ABSTRACT

Dual-energy computed tomography (DECT) imaging plays an important role in clinical diagnosis applications
due to its material decomposition capability. However, in the cases of low-dose DECT imaging and ill-conditioned
issue, the direct decomposed material images from DECT images would suffer from severe noise-induced artifacts,
leading to low quality and accuracy. In this paper, we propose a self-supervised Nonlocal Spectral Similarity-
induced Decomposition Network (NSSD-Net) to produce decomposed material images with high quality and
accuracy in the low-dose DECT imaging. Specifically, we first build the model-driven iterative decomposition
model and optimize the objective function by the iterative shrinkage-thresholding algorithm (ISTA) with the
convolutional neural network. Considering the intrinsic characteristics information (i.e., structural similarity
and spectral correlation) underlying DECT images, which can be used as the prior information to improve the
accuracy of the decomposed material images, we construct the nonlocal spectral similarity-based cost function by
using the prior information and incorporating it into the iterative decomposition network to guarantee stability.
The proposed NSSD-Net method was validated and evaluated with real clinical data. Experimental results
showed that the presented NSSD-Net method outperforms the other competing methods in terms of noise-
induced artifacts reduction and decomposition accuracy.

Keywords: Dual-energy computed tomography, deep learning, material decomposition, low-dose, self-supervised
learning

1. INTRODUCTION

Dual-energy computed tomography (DECT) has been widely used in clinical diagnosis, including kidney stone
characterization, iodine quantitative examination, and many other applications. Compared to traditional CT,
DECT provides two sets of attenuation measurements by exploiting two different energy spectra to achieve
the material decomposition and energy-selective imaging, which opens up new diagnosis possibilities. However,
the direct decomposed material images from DECT images would suffer from severe noise and noise-induced
artifacts, especially under low-dose scan protocols. The main reason is that the material decomposition process
suffers an ill-conditioned problem that leads to severe noise in the decomposed material images.1 To tackle
this problem, many advanced algorithms have been proposed to improve the signal-to-noise ratio of decomposed
material images.

These material decomposition algorithms can be generally divided into two categories: model-driven material
decomposition methods and data-driven material decomposition methods. The model-driven methods2 generally
build a model on the physical properties and the attenuation characteristics, then optimize the objective function
to get the decomposed material images. These methods also can be characterized into one-step inversion,
projection-domain, and image-domain decomposition methods. One-step inversion is mathematically the most
elegant with one-step matrix inversion, but they are very computationally expensive. Projection-domain methods
directly decompose the projection data into the basis material sinograms and then reconstruct them with the
filter back-projection algorithm. Although the decomposition performance is significant, they require accurate

Correspondence: Jianhua Ma.: E-mail: jhma@smu.edu.cn

7th International Conference on Image Formation in X-Ray Computed Tomography,
edited by Joseph Webster Stayman, Proc. of SPIE Vol. 12304, 123040W

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2646645

Proc. of SPIE Vol. 12304  123040W-1



system calibrations that use nonlinear models. Image-domain methods reconstruct each energy bin image and
then directly perform material decomposition on image data, which may lead to beam hardening artifacts. On
the other hand, the data-driven methods3 train the convolutional neural network (CNN) in an end-to-end manner
to obtain accurate decomposed material images. However, these methods have two main problems. First, these
methods do not take into account the inherent physics mechanism, their unexplained property obstacles deep
learning techniques to be widely applied in clinical. Second, most of these existing algorithms are supervised
learning methods. The decomposition performance depends on the quality and quantity of training data pairs.
However, high-quality training data pairs are difficult to acquire in clinic, which limits the accuracy of decomposed
material images and the generalization performance of models.

To address these problems, we propose a nonlocal spectral similarity-induced material decomposition net-
work (NSSD-Net) for DECT. The NSSD-Net couples the model-based material decomposition model with the
deep network and optimizes by the iterative shrinkage-thresholding algorithm (ISTA). Considering the struc-
tural similarity and spectral correlation underlying DECT images, the nonlocal spectral similarity-based cost
function is designed to guarantee network convergence in a self-supervised manner. The main contributions of
the proposed NSSD-Net can be summarized as follows: the first one is that the proposed method fully consid-
ers the material decomposition physician mechanism and combines the benefits of model-driven methods and
data-driven methods. The second one is that the proposed methods use the nonlocal spectral similarity features
as prior information and optimize hyper-parameters by self-supervised learning strategy with no ground-truth
data, which enhances the generalization of the proposed model. Experiments on clinical data have confirmed
the significant decomposition performance of the NSSD-Net.

2. METHODS

2.1 Model-driven material decomposition model

According to image-based decomposition theory, the linear combination of pixel values in the basis material
images can represent the linear attenuation coefficient of each pixel in the input images. Based on the above
assumption, the formulation of the material composition for DECT can be written as:

U = AX, (1)

where U = [µH , µL]
T
denotes the linear attenuation coefficient of high and low energy spectrum, X = [x1, x2]

T

denotes the normalized densities of the basis materials, A is the decomposition matrix and can be represented
as follows:

A =

(
µM1HI µM2HI
µM1LI µM2LI

)
, (2)

where µMij denotes the mass attenuation coefficient of the basis materials, I is an identity matrix with the
dimension of 2N -by-2N , and N is the total number of pixels in one CT image.

Direct decomposition generating decomposed material images with severely degraded SNR, especially at low-
dose levels. This is because there is a large condition number on the matrix A, and this can be treated as
an ill-posed problem, which makes the decomposition process is sensitive to the noise on the raw CT images.
To alleviate this situation, least-square estimation model with regularization R(X) is introduced to suppress
decomposed material images noise, which can be expressed as follows:

X∗ = argmin
X

∥AX − U∥22 + λR(X), (3)

where R(X) = ∥X∥1 and λ is the hyper-parameters of regularization term.

ISTA is a prevailing framework to optimize the decomposition solvation process with non-smooth regularizers.
Each iteration of ISTA involves gradient descent update the decomposed material images followed by a shrinkage-
threshold step:

X(k) = argmin
X

∥∥∥X −R(k)
∥∥∥2
2
+ λ∥X∥1, (4)
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R(k) = X(k−1) − ρAT
(
AX(k−1) − U

)
, (5)

where ρ is the step size, X(k) and R(k) denote the intermediate variables of the decomposed results, and λ is
the hyper-parameter of the regularization term. However, the model-based material decomposition methods are
computationally expensive, and it is difficult to select the optimal parameters (i.e., ρ and λ) and the global
optimal solution in practical applications.
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Figure 1. The overall framework of the proposed NSSD-Net.

2.2 The proposed NSSD-Net

To address these problems, we propose a self-supervised nonlocal spectral similarity-induced material decompo-
sition network. As shown in Fig. 1, the proposed NSSD-Net consists of two parts: (a) ISTA-based decomposition
network and (b) NSS feature generation.

(a) ISTA-based decomposition network: Inspired by the powerful representational capability and u-
niversal approximation of CNN, we use the CNN model F (·) stands for the material decomposition nonlinear
function to suppress the noise of images. Thus, the ISTA-based material decomposition model can be formulated
as:

X(k) = argmin
X

∥∥∥F (X)− F
(
R(k)

)∥∥∥2
2
+ θ∥F (X)∥1, (6)

R(k) = X(k−1) − ρAT
(
AX(k−1) − U

)
, (7)

where θ is a learnable parameter. Therefore, the k-th iteration of the decomposed material images X(k) can be
efficiently computed in closed-form as follows:

X(k) = F̃
(
soft

(
F
(
R(k)

)
, θ(k)

))
, (8)

where F̃ (·) denotes the left inverse of F (·), and has a symmetrical structure with F (·).
(b) NSS feature generation: Considering the intrinsic characteristics underlying DECT images, i.e.,

structural similarity and spectrum correlation, which characterizes the priors of desired DECT images. Based
on the success of the previous work,4 in this work, we utilize this prior information to generate the nonlocal
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spectral similarity (NSS) features to enhance the stability of the ISTA-based iterative decomposition network.

Specifically, the proposed method is designed by averaging the acquired DECT images U = [µH , µL]
T
to obtain

the average image Uavi, which takes the image similarity within the two energies into consideration. Then, we
use the aviNLM method4 to denoise the noisy DECT images U and estimate the decomposed material image Xp

by the image-domain-based decomposition algorithm. The decomposed material image Xp can provide the prior
information to guide the ISTA-based iterative decomposition network. Thus, the proposed nonlocal spectral
similarity-based cost function can be represented as:

LNSSD =
1

N

N∑
i=1

∥∥∥Xi
(Nt) −Xp

∥∥∥2
2
, (9)

where N and Nt are the number of training data and basic CNN module, respectively. Xi
(Nt) is the decomposed

result of the NSSD-Net.

2.3 Loss Function

NSSD-Net takes the noisy DECT image {Ui}Ni=1 and NSS feature-induced decomposed material image {Xp}Ni=1

as input, and generates the decomposed material image, denoted by Xi
(Nt) as output. We optimize the proposed

network by the self-supervised learning strategy and the total loss function can be expressed as:

Lc =
1

NtN

N∑
i=1

Nt∑
k=1

∥∥∥F̃ (k)
(
F (k) (Xi)

)
−Xp

∥∥∥2
2
, (10)

Ltotal = LNSSD + τLc. (11)

where τ is a constant and we set τ = 1 in this work.

2.4 Experimental Dataset and Settings

The clinical patient study was conducted to assess the proposed NSSD-Net performance. After writing the
informed consent from 29 volunteer patients, clinical data were acquired from the GE Discovery CT750 HD
scanner with 140kVp and 80kVp. The virtual monochromatic spectral (VMS) images were generated using
the GE commercial software. In this work, the VMS images at 90kev and 140kev were selected as the DECT
images. In addition, the linear attenuation coefficient of basis materials according to the VMS images reported
by the National Institute of Standards and Technology (NIST). Then, we simulated the noisy DECT data by
the previous work5 to further analyze the noise suppression performance among different material decomposition
methods.

In the experiment, 1000 simulated noisy VMS image pairs (i.e., 90kev and 140kev) from 22 patients were
used for training and 188 simulated noisy VMS images pairs from the remaining patients were used for testing.
The network was implemented on an NVIDIA Tesla P40 GPU based on the PyTorch framework and using the
Adam optimizer. The initial learning rate, batch size, epoch, and iterations were set to 1e−3, 1, 50, and 100,
respectively. During training, the number of CNN basic module was set to 8. According to experience, the initial
gradient descent step ρ = 0.5, the hyper-parameter τ = 1, and the threshold θ = 0.1.

3. RESULTS

Fig. 2 shows the decomposed material images of different methods for two test cases. The first column is the
ground-truth decomposed material images. It can be observed that both direct matrix inversion method (DIMD)
and statistic iterative based decomposition method (Iterative MD) failed to properly distinguish basis materials,
and the decomposed material images were heavily corrupted by the noise and noise-induced artifacts. Compared
to the DIMD and Iterative MD, the data-based material decomposition methods (i.e., CD-Convnet and ISTA-
Net) remove the noise and artifacts further and provide accurately estimates of different materials. However,
compared to NSSD-Net, the data-based material decomposition methods tend to over-smoothen the images,
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Figure 2. The decomposed material images of different methods: the first and third row shows the water decomposed
images with the display window [0, 1] g.cm−3; the second and fourth row shows the bone decomposed images with the
display window [0.5 1.5] g.cm−3.

especially in the structural edge and soft tissue area. The results demonstrate that the self-supervised nonlocal
spectral similarity prior can provide the spectral data structure feature information and effectively guide the
material decomposition process. Fig. 3 shows the profile comparison indicated by the orange lines in Fig. 2. It
can be judged that the NSSD-Net achieves a good balance between bias control and noise suppression.

In order to quantitatively validate the decomposed performance of the proposed NSSD-Net, the peak signal-
to-noise ratio (PSNR), structure similarity index measure (SSIM) and root mean square error (RMSE) metrics
are calculated. As shown in Tab. 1, both NSSD-Net results (i.e. water and bone equivalent fractions), achieve
relative superior quantitative metrics than the other decomposition methods expect for the ISTA-Net. The
possible reason is that the ISTA-Net utilize the fully supervised manner to train the network, while the proposed
NSSD-Net trained without the labeled data. It is worth noting that the proposed method outperforms the ISTA-
Net in terms of the SSIM and confirm that the NSSD-Net can provide the global and local structure information
from DECT images.
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Figure 3. Profile comparison of the ISTA-Net and NSSD-Net along the orange line indicated in the Fig. 2: (a) water
decomposed image, (b) bone decomposed image.
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Table 1. Quantitative results of different material decomposition methods.

Methods PSNR SSIM RMSE

DIMD
bone 22.1648± 1.8508 0.7946± 0.0995 8.8992± 3.0836

water 21.6688± 2.0852 0.8072± 0.0866 9.1729± 2.9362

Iterative MD
bone 27.6527± 1.0160 0.9103± 0.0392 3.6492± 1.1476

water 24.0065± 0.8603 0.8932± 0.0385 4.3312± 1.0572

CD-Convnet
bone 28.1554± 0.8808 0.9264± 0.0198 4.0299± 0.8422

water 29.2132± 0.3138 0.8647± 0.0365 6.1902± 2.0852

ISTA-Net
bone 32.5106± 1.0177 0.9602± 0.0142 1.4208± 0.6827

water 32.6545± 0.7508 0.9684± 0.0251 2.6060± 0.8472

NSSD-Net
bone 31.4440± 1.0940 0.9631± 0.0215 1.6329± 0.6989

water 31.3831± 0.8861 0.9701± 0.0127 2.9008± 0.5268

4. CONCLUSION

In this paper, we propose a novel material decomposition framework for DECT based on the self-supervised
nonlocal spectral similarity prior. Specifically, the proposed NSSD-Net combines the traditional model-based
decomposition model with the data-based method and optimizes the objective function by the nonlocal spectral
similarity prior. The experimental results with clinical data show that the NSSD-Net can obtain accurate
decomposed material images of dual-energy.
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