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ABSTRACT

In this paper, we present a methodology for benchmarking the coding efficiency and energy efficiency of software
and hardware video transcoding implementations. This study builds upon our previous work, which focused on
software encoders such as x264, x265, libvpx, vvenc, and SVT-AV1. We have since added a closed-source video
software encoder implementation, EVE-VP9, as well as Meta’s MSVP VP9 encoder as a hardware representative,
and expanded the test set to include a wider variety of test content in our analysis. To ensure a fair comparison
between software and hardware encoders, we normalize the video encoding efficiency to energy used in watt-hours.
Our proposed test methodology includes a detailed description of the process for measuring compression efficiency
and energy consumption. We summarize limitations of our methodology and identify future opportunities for
improvement.

Keywords: Video compression, Coding efficiency, Adaptive streaming, Convex hull, Dynamic optimizer, En-
coder complexity, Hardware encoder

1. INTRODUCTION

The traditional approach for comparing video codecs has been focused on their compression efficiency using
reference software encoders, without considering the complexity of the implementations. However, as the number
of video coding standards as well as implementations increases, it has become more complicated to evaluate all of
them on a level playing field, considering the vastly different complexity across them. Notable examples include
popular open-source software encoder implementations of the AVC,1 HEVC,2 VP9,3 and AV14 video coding
standards, namely: x264,5 x265,6 libvpx,7 libaom8 and SVT-AV1.9 On top of that, modern video encoder
implementations typically have different features that can be turned on and off, often offered through a set of
presets consisting of curated feature configurations, which provide different levels of trade-off between compression
efficiency and computational complexity. Thus there is a growing need to include complexity as an additional
dimension in codec comparisons. This is becoming especially critical as practical implementations of video codecs
are now available in open-source offerings and are more representative of production-level deployment usages.

In 2018, the Dynamic Optimizer framework10,11 was introduced to compare video codecs fairly in different
encoding resolutions and quality levels, which better reflects the most popular adaptive streaming use case. In
2019, a compression efficiency and computational complexity analysis was presented,12 where comparison was
made on several known open-source encoder implementations including x264, libvpx, and libaom. The Dynamic
Optimizer and software encoding cycle cost were then utilized to compare the performance of software video
encoding implementations.13–15

However, as video codecs mature and hardware-based implementations become more prevalent, the existing
software video codec evaluation methodology, which relies heavily on the amount of CPU cycles consumed during
encoding, cannot be directly applied to hardware encoders. Therefore, a new methodology is proposed in this
work that combines the Dynamic Optimizer framework with an energy measure (watt-hour) to be able to properly
compare hardware and software codecs.
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In Sec. 2, we first describe the methodology proposed, and how the axes would be measured in principle.
Then we demonstrate how the methodology can be executed practically with detailed configurations, testing and
measurement setups in Sec. 3. Challenges, limitations, as well as considerations regarding evaluating the large
scale adaptive streaming use case, are then discussed in Sec. 4. Finally we present the executed results in Sec. 5
on selected software encoder implementations as well as the Meta Scalable Video Processor (MSVP),16,17 the
dedicated video ASIC developed by Meta. Finally with the conclusion in Sec. 6.

2. EXPLAINING THE METHODOLOGY

This methodology is focused on an offline framework that would represent codec performance as seen in Video
On Demand (VOD) use-cases at Meta as described in.18 A simplified view of the transcoding pipeline can be
found in Fig. 1. A very similar pipeline has been reported by other VOD streaming providers in the past. More
details will be discussed in the upcoming section.

Figure 1. A Simple Transcoding Pipeline for VOD Use Cases

The methodology proposed in this work aims at comparing the encoding compression efficiency of different
implementations while taking into consideration the normalized power consumption of the compute component
being utilized. As such, the comparison is done across the following two axes: compression efficiency, and the
energy usage, which we describe separately in the following. We will first start by comparing the energy efficiency
of the core encoding component and we would expand the energy efficiency analysis to the rest of the transcoding
components (decoding, scaling, quality measurements).

2.1 Compression efficiency axis

Several approaches on how compression efficiency can be aggregated were presented in our previous work:14

conventional convex hull approach, combined convex hull approach, and restricted discrete combined convex hull
approach. We opt to use the third method: discrete combined convex hull approach, and create an adaptive
bitrate (ABR) ladder of 8 lanes targeting quality specific quality levels as measured by VMAF19 and SSIM.20 A
quick refresh of the construction of these lanes can be found in Fig. 2.

Figure 2. Combined Convex Hull Construction with Dynamic Optimizer
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2.2 Energy usage axis

In recent codec comparisons, we have employed the Linux utility ”/usr/bin/time -v” to record the user and
system time of the encoding pipeline, when ensuring the system is fully loaded with encoding jobs. This measure
has been found to be strongly correlated with energy consumption, as demonstrated previously.14 Additionally,
this metric is neutral and does not rely on implementation-specific reporting.

The time utility calculates the number of cycles used by a process, which essentially tracks the CPU usage
of the process. This is quite applicable for software-based implementations. However, for hardware encoding,
the processing is performed on specialized hardware components rather than the general purpose CPU. Thus,
any cycles captured would not be comparable across hardware and software implementations. Note that even if
we could capture the hardware cycle count, it cannot be compared directly with CPUs or with other different
hardwares, since they represent different HW architectures, system clock speeds and power consumption per
cycle. To address this, we propose to use the power consumption of each component processing the software or
hardware implementations. To normalize the comparison, we multiplied the power consumption by the time it
takes to run a fixed set of encodings, which is effectively measuring the energy used. This energy measure is also
commonly used for electrical bills, electronics consumption factors, and electric vehicle electricity usage. Most
importantly, energy consumption is the dominant factor used to determine the operational-expense (OpEx) cost
of a service running on Meta’s data centers.

3. EXECUTING THE METHODOLOGY

In order to demonstrate how the methodology can be adopted and executed, we have set up a series of tests
comparing the compression and energy efficiencies of a variety of publicly available software and hardware
implementations. This section outlines the testing setup utilized to construct the 8-lane bitrate ladder along
with the BD-rate and power utilization to be measured.

3.1 Content Selection

For this test, we use the following pool of clips to start with:

• El Fuente open source clips processed to 1080p30 resolution and split into 140 shots. Available to download
from CDVL.21

• A Meta-selected subset of 1080p clips from the YouTube User Generated Content (UGC) test set.22 This
set has square, vertical, and horizontal videos at different frame rates.

We encode all 322 clips with 8 CRF values ranging from 23 - 63 and 5 resolutions (1080p down to 288p) using
the SVT-AV1 encoder13 in preset 8, and compute the VMAF score at original resolutions. K-means clustering
was performed on the produced RD (rate-distortion) points. The closest one to the center of each cluster is
selected. We thus select a diverse set of contents without having to use the full list.

As a result, we ended up selecting a total of 200 clips split across the following buckets:

• El Fuente: 62 clips

• UGC Square: 49 clips

• UGC Vertical: 50 clips

• UGC Horizontal: 39 clips

Looking at the resulting test set above we have also noticed that the 30fps content represents more than two
thirds where the rest is split across 60, 25, and 24 fps. The full distribution by duration is shown in Table. 1.
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Table 1. Framerate Distribution of the Selected Video Test Set

FPS Percentage by duration
60 12%
50 2.8%
30 69%
25 6.7%
24 7.8%
15 1.1%
12 0.6%

3.2 The Transcoding Pipeline

To perform transcoding on the selected video clips, we have followed our previous work.14 A quick refresher on
the pipeline can be in Fig. 3.

The steps are described briefly as follows.

• Group all test sequences that belong to the same class (e.g., 1080p) into subclasses that also have the same,
or very similar, frame rate.

• For each subclass, each test sequence is treated as a “shot”, part of a longer combined sequence that is a
virtual “collage” of all sequences in the subclass.

• After obtaining the convex hull for each “shot”, the multiple convex hulls are combined using the approach
described in Dynamic Optimizer work.11 This results in a single rate-distortion curve describing the coding
performance over the entire combined sequence.

• From the single rate-distortion curve, 8 operating points are chosen that are as close as possible to the
following VMAF quality values: 30, 40, 50, 60, 70, 80, 90, 95. SSIM values are also mapped to the 0-100
scale using the approach described in 23.

• Once a set of 8 ABR lanes have been determined for each encoder implementation and each preset (concrete
examples can be found in the later section on executing the methodology), select one particular encoder
implementation at a particular preset to be used as the quality reference.

• Compute the Bjontegaard Delta-Rate (BD-rate)24 difference between each set of lanes representing one
encoder, preset and the lanes representing the quality reference. Given that the qualities are usually quite
close to the target quality in this case, we can also read the BD-rate difference as a bitrate difference,
overhead or savings

3.3 Selecting the Resolutions

We have reduced the resolution selection due to certain hardware encoders not supporting some resolutions used
previously. As such the following resolution set has been selected:

[1920x1080, 1280x720, 960x540, 640x360, 512x288]

We have opted to pre-downscale the content using the FFmpeg25 Lanczos filter with alpha parameter set to
5 for all encoders and not utilize the scalars that are available in the hardware System-on-Chip (SoCs) to make
sure we restrict the comparison to the encoder’s compression efficiency. A sample FFmpeg command line to
perform such downscaling is shown here:

ffmpeg -y -i input.y4m -sws_flags lanczos+accurate_rnd+full_chroma_int -

sws_dither none -param0 5 -strict -1 -s:v 1280 x720 output.y4m
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Figure 3. Shot Based Encoding Workflow

3.4 Selecting the Encoders

We have chosen a wide selection of software encoder representation representing all codecs, as shown in the
following:

• AV1: SVT-AV1 v2.1.09

• VP9: libvpx v1.12.07

• VP9: EVE-VP9 v1.3.5226

• AVC: x264 v0.1575

• HEVC: x265 v3.66

• VVC: vvenc v1.12.027

Example encoding commands used with each encoder can be found in Appendix A.

For hardware encoders, we have selected the Meta Scalable Video Processor (MSVP) VP9 encoder. A picture
of the cards used can be seen in Fig. 4.

3.5 Selecting the Encoding Parameters

We choose the same selected range of CRFs that would align the quality with that achieved by SVT-AV1. The
per encoder CRFs are shown as follows for each encoder implementation:

• SVT-AV1: 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

• libvpx: 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

• vvenc: 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

• x265: 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 47

• x264: 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 47
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Figure 4. Meta Scalable Video Processor (MSVP)

• MSVP VP9: 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

• EVE-VP9: 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252

3.6 Measuring the Compression Efficiency

To assess the compression efficiency, we employed the combined restricted dynamic optimizer method and utilized
SVT-AV1 M0 as a quality reference. In this instance, we had a mix of frame rates and a slightly different set of
resolutions (1920x1080, 1080x1080, and 1080x1920).

We chose to measure the dynamic optimizer per pixel count bucket, combining 1920x1080 and 1080x1920
into one bucket and considering 1080x1080 separately. This is also done for each class of frame rate. We then
combined the final results by adding up the file size per video for all buckets and using a weighted average for
the quality to obtain the final number.

For example, calculating the M0 preset results of SVT-AV1 in VMAF would involve the following steps:

• Collect the rescaled metrics across all encodings.

• Process the file through the dynamic optimizer framework to generate 8 bitrate vs quality points for each
of the buckets below:

Bucket Resolution fps num fps den fps
1080x1080 12 1 1080p square 12 1 12.00
1080x1080 24000 1001 1080p square 24000 1001 23.98
1080x1080 25 1 1080p square 25 1 25.00
1080x1080 30000 1001 1080p square 30000 1001 29.97
1080x1080 50 1 1080p square 50 1 50.00
1080x1080 60000 1001 1080p square 60000 1001 59.94
1920x1080 15 1 1080p vertical or horizontal 15 1 15.00
1920x1080 24000 1001 1080p vertical or horizontal 24000 1001 23.98
1920x1080 25 1 1080p vertical or horizontal 25 1 25.00
1920x1080 30000 1001 1080p vertical or horizontal 30000 1001 29.97
1920x1080 50 1 1080p vertical or horizontal 50 1 50.00
1920x1080 60000 1001 1080p vertical or horizontal 60000 1001 59.94
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• Each of the files representing the buckets above will be in the following format (e.g. 29.97 1920x1080):

Bitrate VMAF
83.287 30
126.472 40
193.864 50
304.616 60
495.802 70
872.578 80
1903.656 90
3707.997 95

• Multiply the framecount and divide by the fps of the corresponding bucket to get the filesize for each point:

Bitrate VMAF File size (KB)
83.287 30 38089.14321
126.472 40 57838.67975
193.864 50 88658.65812
304.616 60 139308.2047
495.802 70 226742.1492
872.578 80 399050.8531
1903.656 90 870587.5588
3707.997 95 1695755.985

• Construct the ladder per preset following the two operations:

– Adding up the resulting file size across all buckets.

– Taking a weighted average of the quality scores per duration of the bucket vs the whole content.

• We would end up with 8 quality vs. file size points for each preset as shown below for M0 of SVT-AV1:

File size (KB) VMAF
71140 30.23
105469 40.43
159274 50.13
252431 60.03
423250 70.03
788343 79.96
1937022 90.02
4204025 95.01

The above quality vs file size points are used as a reference to compare to any other encoder preset points
and measure the BD-rate difference between the two sets of points. We then perform the same operation for
each encoder implement and each preset. An example of the VMAF RD-curves comparing the ABR ladders
constructed for SVT-AV1 presets M10 to M0 can be found in Fig. 5.

3.7 Measuring and Estimating the Energy Consumption

We first make sure that the platform is utilized as much as possible (either on CPU or hardware card). Doing
so in SW pipelines is relatively straightforward by using utilities such as “parallel”28 which dispatches a desired
number of parallel tasks and monitors their completion in order to launch new ones, once some of them finish.
For HW pipelines, this is more complicated, since each HW vendor has their own mechanism to interface and
dispatch tasks to it, but we in general followed the best practice recommended by such HW vendors. Even with
that, there is no practical way to ensure full, 100% utilization of these HW video transcoding cards and more
is needed to provide a, hopefully, unified framework that allows users to achieve maximum resource utilization.
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Figure 5. VMAF Rate Distortion curves comparing the final results of SVT-AV1 M10 and M0

The maximum power usage of each platform is used and the time it takes to finish all encoding jobs is measured.
We then multiply the watts measure (e.g. 12 Watts for the MSVP HW encoder) by the wall clock to finish the
encodings (e.g. 1 hour) to get the watts-hour measure per preset (e.g. 12 watt-hour).

3.7.1 Power numbers utilized for energy usage

In this case, the following power measurements have been used for different platforms:

• To run the hardware encodings MSVP - 12 Watts

• To run the software encodings, we have utilized an AMD Bergamo 96D4 on a 1U server that is rated at
235 Watts

The wall clock measurement was done considering initially only the encoding time and not considering any
other part of the pipeline. We have then added the other parts of the pipeline (decoding, scaling, quality metrics)
in a separate set of results.

4. CHALLENGES

Several challenges were encountered when we applied the methodology on other publicly available hardware
encoders. We have opted not to present the results given these challenges in order not to misrepresent the per-
formance of these offerings. We describe them in three categories: loading the system, accurate and representative
power measurement, and a variety of use cases.

4.1 Loading the Card

Unlike the live broadcasting use case, it is common to schedule a wide variety of encoding jobs with different
duration and resolutions in a video-on-demand use case. There can be shorter duration as well as lower resolution
encodings, both from source or the derived encodings. In our benchmarking on hardware encoders, it appears
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that some can run into bottlenecks in scheduling and pushing encoding jobs through the card. Specifically, we
have seen some performance discrepancies when running exclusively a longer 1080p sequence vs. several shorter
sequences with mixed resolutions. Frequent starting up and shutting down the encoding sessions for different
video sequences could introduce non-trivial overhead, which prevents us from fully utilizing the hardware engines.

Helper utilities are indeed available to monitor the utilization of different hardware blocks. However, we often
need to perform trial-and-error on the more optimal concurrency on different systems, by trying out different
concurrent sessions and closely monitoring the utilizations as well as success rate manually. Different resolutions
could also need a different number of concurrent sessions to be able to maximize utilization. Encoding failures
sometimes can be observed when concurrency is pushed too high.

4.2 Accurate and Representative Power Measurement

It has been a challenge to fairly represent the power consumption or measurement between CPU and hardware
in terms of video encoding. There are several factors.

Most commercially available hardware encoders have components other than video encoding. Each system
may also contain a different mix of components, which all have a variety of different capabilities. These com-
ponents can consume power even when sitting idle. In the proposed methodology, we would load the system
as much as possible and take the maximum power usage of each platform as the consumption, which does still
include the idle components, but there is no easy way to separate them out.

Furthermore, system configurations can quite significantly change the performance. Each hardware encoder
in the real world would have to be hosted by a system with CPU, memory, and other components. The choice of
these components, as well as the density of the hardware video encoder (i.e., how many such HW accelerator cards
are connected on a single host),, which can vary by platform, could affect the normalized power consumption
quite noticeably. Even in the case of using a CPU platform, the choice of rest of the system components would
also change the consumption. In this benchmarking, we opted to take the entire system for the CPU platform,
considering that a hardware encoder card does contain certain general purpose processors as well as on-board
memory. While on the other hand, we only look at the maximum power usage of the card itself in this study.
We believe that this indeed gives a fairly good representation, given the limitations we mentioned above.

4.3 Covering Use Cases

Major use cases for video encoders are primarily Live and Video-on-demand (VOD). VOD use case at Meta
involves full transcoding, high-quality scaling, and quality metrics evaluated at specified viewports.23 Besides
decoding and encoding, such a pipeline includes high quality downscaler, high quality upscaler, as well as diverse
sets of quality metrics. We have found that many existing solutions have different quality levels in the downscaler;
do not necessarily include a high quality up-scaler; and often times only with limited selection of quality metrics.
Furthermore, any one of the different available hardware blocks could become the bottleneck, which highly
depends on the use case.

With that in mind, we opted to present the execution of the methodology with a set of encoder-only experi-
ments to eliminate any other factors, such as different length filter taps in downscaler. However, we believe that
to accurately capture and evaluate large scale adaptive streaming use cases, the full pipeline should be taken
into account.

5. RESULTS

The executed results are presented in this section with graphs. Each color on the graph represents a particular
codec implementation, and each point corresponds to a particular preset for that implementation. The y-axis
shows the average VMAF/SSIM BD-Rate of each preset compared to SVT-AV1 M0. The x-axis (in logarithmic
scale) is generated by multiplying the wall clock time required to complete all tests, by the power consumption
of the system, 235W for the CPU workloads and 12W for the MSVP card. The results in Fig. 6 show that
there is indeed an advantage of hardware video encoder over the state-of-the-art software implementations and
systems. That is, at similar compression efficiency, hardware video encoders consume much less energy, even
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Figure 6. BD-rate vs Energy Consumption Trade Offs across Different Encoders

when comparing VP9, an earlier generation codec, to the latest AV1. We do see though that the energy savings
advantage is reduced as we go to higher quality presets of the MSVP VP9 encoder.

Furthermore, as stated in the previous section, in real world large scale deployment, the full pipeline must be
accounted for. This includes the cost of the full transcoding and quality metrics pipeline: decoding, downscaling,
encoding, upscaling, and quality metrics calculation. In this case, the transcoding pipeline including upscaling
and VMAF calculations measured each 16 frames can be done in MSVP without much impact to its energy
usage.17 While in the software pipeline, the components other than encoding can consume a larger portion of
the pipeline especially when operating at a high speed encoding preset.

Following the same methodology described above and assuming a full utilization of the CPU, we have mea-
sured the wall clock of each of the transcoding components, other than encoding, by taking the following steps:

• Encode the input video with x264 medium with default settings at CRF 20 to have a compressed input.
A sample command line is shown here:

./ ffmpeg -i "$file" -c:v libx264 -crf 20 -preset medium "$output_file"

• We first measure the wall clock of decoding and downscaling the input bitstream. We found this component
of the pipeline has the smallest energy consuming step in the software pipeline, representing <1% of the
total energy usage of the pipeline, as it is done only once for 1080p input streams.

• We then measure the wall clock of decoding the resulting bitstreams using the available decoders in FFmpeg,
upscaling and calling the libvmaf library with the additional parameter ”subsample=16”. We found that
these components can take a small portion of the energy consumption of the pipeline: ∼1% when encoding
with SVT-AV1 M0, or it can add up to >60% of the pipeline when encoding with a much faster encoding
preset such as M13.

• We then sum up all of these as a fixed cost to all presets and software implementations on the curve, and
update the graph accordingly.
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Considering the full cost of the pipeline, we now see an energy savings of the hardware implementation that
goes anywhere from ∼2x to ∼5x. The results are shown in Fig. 7.

Figure 7. BD-rate vs Energy Consumption Trade Offs across Different Transcoding Pipelines

6. CONCLUSION

In this work, we present a methodology of evaluating and comparing software and hardware video encoders, on
different platforms, in a level playing field. This extends our previous work on comparing software implementa-
tions fairly and representative of large scale production use cases.

We demonstrate how this methodology can be executed in practice by employing it on various software
encoders as well as a dedicated video ASIC. We also present what the results would look like when the full
transcoding pipeline is taken into consideration, for better matching large scale deployment use cases. The
results further show that, with optimized hardware design, a previous generation video codecs can still outperform
software implementations of the latest generation codecs on the energy vs. coding efficiency plane. We highlight
how the integration of high-quality downscaling, upscaling and state-of-the-art video quality metrics (such as
SSIM and VMAF) in a HW video transcoding card can bring significant savings over SW solutions, where many
times those additional components account for a large portion of complexity/power requirements.

Several challenges on evaluating across different platforms have also been presented. With the exception of
Meta’s MSVP HW transcoder, which was designed with the Video-On-Demand use case in mind, other HW
solutions lack a proper (and ideally unified) interface that allows for maximum loading of HW encoders in a
reliable way. We believe that the proposed methodology provides a framework to evaluate as well as aid in
developing the next generation of video codec implementations, whether they are in software or hardware.

APPENDIX A. SAMPLE ENCODING COMMAND

• x264:

./ ffmpeg -y -i <input > -g 301 -keyint_min 301 -crf <crf > -c:v libx264 -

threads 1 -preset <2,9> -tune psnr -x264 -params scenecut =0 -f h264 <

output >
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• x265:

./ ffmpeg -y -i <input > -g 301 -keyint_min 301 -crf <crf > -threads 1 -c:v

libx265 -preset <0,9> -tune psnr -x265 -params pools =1: wpp =0:no -info =1:

scenecut =0 -f hevc <output >

• vvenc:

./ ffmpeg -i <input > -vcodec libvvenc -preset <0,4> -vvenc -params

internalbitdepth =8: intraperiod =301:qp=23: threads =1: accessunitdelimiter

=0 -f rawvideo <output >

• libvpx:

./ vpxenc --ivf --codec=vp9 --tile -columns =0 --arnr -maxframes =7 --arnr -

strength =5 --aq-mode=0 --bias -pct =100 --minsection -pct=1 --maxsection -

pct =10000 --i420 --min -q=0 --frame -parallel =0 --min -gf -interval =4 --

max -gf-interval =16 --verbose --passes =2 --end -usage=q --lag -in -

frames =25 --auto -alt -ref=6 --threads =1 --profile =0 --kf -min -dist

=301 --kf -max -dist =301 --cq -level=<crf > --cpu -used=<0,4> -o <output >

<input >

• EVE-VP9:

./ ffmpeg -y -i <input > -g 301 -c:v libeve -vp9 -speed <1,6> -threads 1 -

tune psnr -cqf <crf > -keyint_min 301 -reorderconstraint none -f ivf <

output >

• SVT-AV1:

./ ffmpeg -y -i <input > -crf <crf > -preset <0,13> -g 301 -threads 1 -c:v

libsvtav1 -f ivf -svtav1 -params lp=1 <output >

• MSVP VP9:

./ ffmpeg -y -init_hw_device fbv:/dev/tenjin0 -i <input > -filter_complex "

[0:v]format=nv12 ,hwupload ,format_fbv=f=tile ,scale_fbv=iw:ih ,split =2[

main][tmp ];[ tmp]scale_fbv=hme =1[ hme ];[ main][hme]splice_fbv[out]" -map

’[out]’ -c:v vp9_fbv -noautoscale -vsync -1 -vp9_alt_ref 1 -preset

hq_vod -gop_size 300 -crf <crf > -b:v 0 -f ivf <output >
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