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ABSTRACT

This paper presents a complete toolbox to be used together with the MATLAB ISIMULINK software. The versatility of
this software is used to form analysis blocks in the time and frequency domains, allowing the user to simulate optical fiber
links of any topology, as long as the analysis of its performance face changes in the values of its parameters. Results for
LED (F.D.), Quantum Well (T.D.) and Fabry Perot (F. D.) LASERS are shown.
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1. INTRODUCTION

The use of educational softwares is widely recommended in present days as a complementary tool in electrical engineering
and associated disciplines. This results primarily from the fact that these softwares offer convenient means for mathematical
manipulations and for the visualization of the physical phenomena associated with these disciplines. In addition, the high
cost of modern laboratories in this area enhances the interest of a more diversified use of these softwares [1].
The Matlab, Mathcad, Maple and Mathematica softwares, for example, are widely used in engineering, not only as a
teaching but also as a professional tool. Besides, these softwares provide a friendly computational environment in which the
facilities of numerical and/or classical algebraic equations solutions combine with the facilities of visualization and
document integration. As a result, the difficulty, quite often encountered by undergraduate and graduate students, is partially
overcome from the moment that these students are faced with a didactic computational tool and of easy comprehension,
implemented in an environment familiar to the students.
The analysis need of the performance of each component individually or in group in a optical fiber telecommunication link
has given reason for the creation of a toolbox, which should be used along with the Matlab/Simulink software, allowing the
programmer to concentrate only in the validity ofthe model being used.
The toolbox may be understood as a group of blocks which represent the various components of a optical link, such as light
sources (LEDs and lasers), optical fibers (multimode and monomode), photodetectors (PIN or APD) and allow the
simulation of its dynamic behavior individually or in group. Its main characteristic is therefore its flexibility, for there is no
topology defmed, and the user is the one who decides the way the system is built up.

2. DEVICE MODELS

In this section is shown how to construct Simulink blocks using the mathematical (physical) model. The devices can be
analyzed using T.D. or F.D. model. For illustrating proposals, the source models for LED, Fabry-Perot Laser and MQW
laser will be described. In the F.D. the Fourier Transform (F.T.) ofthe optical power, Pe(f) (watts) can be expressed as:

e (f)= HT (f).Id (f)' ( 1)
Where H(f) is the transfer function of the source and 'd (f) is the F. T. of the injected current (A). The transfer
function can be decomposed in two parts:

HT(f)=HT(O).H(f) (2)
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The meaning of parameters in (3)-(7) are given at TABLE I.

2.2. Multimode Fabry-Perot:

['d—'th
HT(0) = I Thntext2.q)

TABLE I
PARAMETERS OF (3),(7)L External Quantum efficiency Q Electron charge (1 .60218 iø' c)

Internal Quantum efficiency Nonradiative recombination lifetimer______
7hnj

h

Injection current efficiency

Planck's constant (6.62 x iø
Tr

Radiative recombination lifetime

Semiconductor refraction index

C Light velocity in the vacuum (2.99793 x 108 mIs) , Refraction index (air =1)

2 Emission wavelength (m) 7 Optical cutoff frequency (3 dB)
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In the previous equation, HT(O) is the quantum efficiency of the light source (W/A), H(f) is the normalized frequency
response of the light source.

2.1. LED

For the LEDs the transfer function can be expressed as/4J
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The term H (f) in (2) is expressed by
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where:
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For the Fabry-Perot laser the transfer function can be expressed as [4]
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The description of new parameters at (8)-(12) are given in TABLE II.

TABLE II
PARAMETERS OF (8)-(12)

Injected current j Polarization current (A)

7 The threshold current (A). . Carrier recombination lifetime (s)

1? Mirror reflectancy (m) p Dumping frequency (Hz)

7 loss coeficient Resonant frequency (Hz).

1 Cavity longitudinal dimension (m)

Obs : the former expressions are valid only for 'd > 'th i.e., in the stimulated emission region

2.3. Quantum-Well (QW) LASER.

To obtain the response of the quantum-well (QW) LASER was not used a model, but a implementation in the time domain
through a block diagram using SIMULINK, according to the following rate equations [2]:

dN I NN—= -g0(N—N01—eS)S——+----- (13)dt qV0 -C,, r,
4: Fg0 (N -N0Xi - eS)S + F/3N

(14)
dt 1,, T1,

S FrA.0—= =v (15)
Pf Vactl7hC

The terms of the above equation are described in TABLE Ill
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TABLE III
PARAMETERS OF (13)-(15)

7___ Active region carrier density fl Spontaneous emission coupling factor

r— Photon density . Photon lifetime

7___ LASER output power 17 Differential quantum efficiency per facet1 Injection current , Lasing wavelength

v;— Active region volume Q Electron charge

g0
Gain coefficient. H Planck's constant

N0 • .

Optical transparency density.
C Light velocity (vacuum)

•1 Fenomenological gain-saturation term y Equilibrium carrier density

-•:——
Carrier lifthme 1' Optical confinement factor

Accordingly with [1], the standard rate equations that use a linear gain-saturation term of the form (1-c)S can
possess three dc solution regimes for nonnegative values of injection current, which two of them are nonphysical solutions,
characterized for negative power and high power solutions. For the parameter values used in this paper, the nonphysical
solutions would happen above a injection current value between 0.5 and 2A [1J, which is higher than typical values applied
in these simulations

3. TOOLBOX PRESENTATION

The developed blocks are separated in five main groups for the convenience of the user. They are: Signal Origin, Light
Sources (explained here), Optical Fibers, Photodetectors and Passive Devices. Anytime one of these groups are "double-
clicked" with the mouse, the user gets access to the windows containing blocks representing each component of the system.
These windows are shown in Figures 1 through 6 Using this blocks, it is possible to assemble a simulation diagram, as will
be demonstrated in the next section.

r;iir

Signal Origin Light Sources Optical Fibers Photodetectors Passive Devices

r + + 1993 CésarAlbuquerque Limaemons ra on Joäo Crisóstomo Weyl A. Costa

Figure 1 - Toolbox Main Window.
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Figure 2 - Signal Origin Group Window.

Figure 3 - Light Sources Group Window.

Figure 4- Optical Fibers Group Window
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Figure 5 - Photodetectors Group Window

Figure 6- Passive Devices Group Window

3.1. LED

En fig.7 can be seen the LED block, with other blocks like signal generator and scope. The user can quickly change th
parameters of a LED block, as shown in fig.8.

Fig. 7- Structure used to simulate the behavior of a LED

Values used in the simulations of this work are also shown in figs. 8, 11 and 14. Using this structure to simulate the
behavior of a LED, and plotting the optical power emitted when the input is a test square wave, can be seen in the fig. 9.
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3.3. Quantum-Well LASER

The block diagram related to the simulation ofthe LASER diode is shown in the fig. 13.Fig. 14 illustrates the dialog box for
input parameters, activated by double clicking the Rate equation block, allowing the simulation of QW LASER for
different materials and structures. Accordingly with (13)-(15), the "rate equations" block in fig 13 is composed by the
stmcture shown in fig. 15. Fig.16 shows the plot of optical power output corresponding to the values given in fig.15 (default
values), where the injected current varies between 0 and 10 mA with a period of4O nS (25 Mhz). It Can be observed in this
figure that there is a significant delay in the response, considering that the lower level of the injected current is below the
threshold current to cause lasing. To other experienced simulations, varying the injected current between 8 and 10.5 mA,
the output optical power follows the shape of the input signal in a better manner, with less delay, with a consequence that a
greater operating frequency could be used. However, the rising of the superior level of the injected current, the overshoot
becomes bigger, indicating a reduction in the relative stability of the system. Fig. 17 shows the relation between the photons
density S, carrier density N and the optical output power to the same injection current used in fig. 16.
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Fig.14- Dialog box for the QW LASER
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Fig.13 — Block diagram used to simulate a QW LASER
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Fig 15 —Block diagram of "rate equations" module in time domain.
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Fig 16- Optical Output Power to a input current varying between 0 and 10 mA



time (10' s)
Fig. 17— Variation ofthe photons density S, Carriers density N and Optical output Power to an input current varying between 9.5 e 10.5

mA

4. TOOLBOX UTILIZATION EXAMPLE

The blocks shown can be used to simulate a variety of optical links configurations, considering that the blocks disposition
depends of the user to compose the system. In this example, it will be used a simple point-to-point topology, with purely
didactic objectives. The simulated link can be seen in fig. 18, mounted exclusively with blocks contained in the five groups
mentioned before.

Once the value defmition for the blocks is done, the simulation can be started using the "Start" option in the "Simulation"
menu. The result will soon appear on the screen, and is shown in Fig.l9, in the time period of 0 to 10 ns. It mustbe noted
that there are three different points of observation (graph scopes in Fig. 18), all with the same magnitude scale.
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Fig. 18 - Simulation diagram for a point to point optical link.
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Fig. 19 - Simulation results for the diagram shown in Fig. 18.

5. CONCLUSIONS

The SimulinkTM blocks described here have been used as a teaching tool for undergraduating students in basic courses of
optical fiber communications at UFPa. The facilities ofthe computer simulation allows a better understanding ofthe theory,
improving the student's yield, and the flexibility of the software permits the investigation of the influence of various
parameters, proving to be a good didactic complement. Currently, the authors are developing models for filters, optical and
semiconductor amplifiers, non linear fiber optics blocks to analyze high bit rate optical systems.
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