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ABSTRACT
As patterning dimensions decrease, die yield and performance become increasingly sensitive to smaller
amounts of process variations. To minimize variability, Process Control is applied to prevent excursions,
improve yield, decrease non-product runs, reduce cycle time due to rework, and reduce equipment
calibration and maintenance. Intel inline Process Control aims at rapid detection, classification, prediction,
and correction of problems and/or non-optimal performance during wafer processing. For efficient process
control, robust analysis is needed in order to monitor the process, detect, and predict the process behavior.
The paper will address Intel model based control and will focus on the various model based analysis and
control modules that Intel has developed, and deployed for different technology generations. With the rapid
increases in the number of analysis and control modules and the emerging need for integrating such
modules to allow sharing of data, applications and methods, there is a need to define standard interfaces for
such modules. This need motivated Intel to lead the development of SEMI E133; the Process Control
Systems (PCS) Standard that was approved on October 2003.

1. INTRODUCTION
The ultimate goal of Process Control Systems (PCS) in manufacturing is to be able to predict, with

increasing certainty as the product moves through the manufacturing line, what the functional
characteristics of the device will be. Robust and efficient Process Control mechanism results in significant
manufacturing cost reduction and reduces product variation. By definition [1-6], Process Control can be
done through many capabilities or Functional Groups [3]. These include run-to-run (R2R) control, fault
detection (FD), fault classification (FC), fault prediction (FP), and statistical process control (SPC).

Development and implementation of the optimal process control mechanism involve three phases [7-9]:
• Phase I: PCS monitor data from process, defect and metrology measurements to determine if

the process equipment is performing in a consistent manner.
• Phase II: PCS are integrated together. At this point, knowledge exists on the link between

process anomalies and the physical characteristics of the device. Also, either through the use
of designed experiments or first principles modeling, it is known how to adjust various recipe
parameters in order to minimize variation in the desired device characteristics.

• Phase III: Availability of models which not only link process equipment performance to
device characteristics, but to ultimate performance characteristics.

To achieve the objectives of phase II and III, PCS will need sophisticated data publishing, analysis and
mining capabilities which must be sensitive, robust and fast. Data analysis is crucial in identifying sources
of variations and in recommending decisions. With the Nanotechnology introduction at Intel, data analysis
is becoming more complicated, requiring more time for model development, testing and validation. In
addition, models may be shared between different capabilities and applications. Current PCS applications
are reasonably good at providing the requisite capabilities, but they are poor at working together. Limited
data sharing, components interaction and model integration reduce IC makers’ ability to aggressively reach
Phases II and III objectives.
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The paper will first address the basic elements of a generic Process Control application with focus on the
data analysis part. This will be followed by presenting two of Intel Analysis and Control modules for
Critical Dimension (CD) and Overlay (Registration). Results will be shown for both modules to prove that
accurate model based analysis is needed for precise and efficient Process Control. Finally, due to the fact
that there is a lot of data sharing between the tools (process, metrology) and the applications (analysis and
control) and between the applications themselves, there is a need for standard interfaces for process control
applications. Intel role is leading the development of this PCS Standard SEMI E133 that was established
last year will be outlined.

2. DATA MODELING FOR PROCESS CONTROL

Each PCS implementation has the following three basic elements [7-9],
• Data Acquisition: Wafer/lot, equipments/tool data are collected at one of the following phases of

wafer processing:
o During processing: real time (usually in-situ) data are collected and analyzed to ensure

that tool/process is running within specs. For example, temperature and pressure
measurements may be collected during wafer processing to ensure excursion free
environment and alarm users in case of mis-processing [7]

o After processing: Post process data are collected to monitor the health of a process or a
tool. As an example, Overlay and Critical Dimension measurements are collected from
metro tools and analyzed to determine if material will be passed, re-processed or
scrapped [4]. Control actions may be taken to adjust/stop tool or hold lots [5]

o Before processing: measurements are collected, analyzed and analysis results are
employed to adjust the tool before next wafer, lot or batch is processed. Example:
analyzing metro data and feeding adjustments to tools before lots are processed [5]

• Data Analysis: Computational methods, algorithms, empirical relations, and statistical techniques
may be applied on the collected data, resulting in a reduced set of data points that enable decisions
making and actions taking [1], [2], [4].

• Decisions and actions: Based on analysis results, decisions can be made and actions may be
triggered (if needed). Decisions may be wafer, lot, batch, or tool/equipment based [6-8]. Decisions
may include material disposition (pass, fail or rework), tool shutdown, lot holding, and/or user
notification. Also, based on analysis results, control actions may be invoked to adjust tool or
change recipe.

As can be seen, all PCS implementations handle data in a consistent way (collection, analysis, decisions
and actions). That consistency leads to the introduction of the PCS Analysis Engine (AE) concept [3], [7].
Using this concept, any PCS functional group (SPC, R2R, FD, FC, and FP) can be modeled as an AE with
inputs representing measured and configuration data, and outputs representing results, decisions and actions
[3]. The conceptual PCS AE was the first driver of the integrated PCS Framework at Intel [9], [13].

To achieve the desired levels of process control and minimize variations, each AE will employ a specific
type of data modeling. Accurate data modeling mechanisms are needed to analyze and predict the system
behavior. Data modeling mechanisms should take into account all factors and parameters that introduce
variability. Among them, changing operating conditions, process unknown disturbances (for example: tool
characteristics, specs change with time), process drift, and nonlinearity included.

Data modeling and analysis features include the following:
• Timing: Covers the time window for analysis execution (before, during or after processing)
• Disposition: Indicates if disposition and decisions will be wafer, lot or batch based
• Trend: Shows entity variation or change over time, or tool
• Smoothing: Applies data smoothing algorithms and techniques to collected measurements before

analysis to reduce noise effects, outliers and measurement errors
• Offline analysis: Implies inline analysis methods, algorithms, and codes availability for offline

systems/applications.
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As can bee seen in Figure 1, each Process Control module is preceded by an analysis module. The process
analysis module applies models (statistical, physical, empirical, or mixed) to the input data, and generates a
few numbers/metrics. These numbers/metrics are fed to the control module which may employ other
models to detect anomalies, monitor the process, and identify issues or out of control conditions and take
actions if needed.

3. EXAMPLES OF INTEL DATA MODELING AND PROCESS CONTROL
SYSTEMS

The section will address two examples that illustrate the utilization of data analysis and process
control modules. We will focus on two Photolithography applications; CD and Overlay modeling and
control. As can be seen in [14], patterning dimensions are shrinking and as a result, robust control is
required to ensure the success of the patterning process. This translates to tighter control limits on both CD
and overlay. With that robust control becoming a requirement, an accurate analysis module taking into
account all sources of variation should precede the Process Control Module.

3.1 CD Modeling and Control:

Patterning variations can come from lithographic scanners or resist tracks and from etchers.
Lithographic scanners can cause focus drifts generated by wrong focus offset in the scanner recipe and field
level tilts causing substantial focus differences. Focus deviations result in changes in feature profiles and
actual CDs. A CD modeling methodology was developed to take the CD data as inputs, fit a model and
extract the systemic components that will be utilized to predict the CD levels at each point within the wafer.
Finally, predicted CD’s are summarized per wafer and/or per lot, yielding a smaller set of numbers that
enable decision making and action taking.

The CD modeling results are shown in Figures 2-5. Here is a description of each one:
• Figure 2: The model predicts CD’s at all points within the wafer and identifies locations with

maximum and minimum CD’s. The wafer CD’s are then rolled up to the lot level and are
reported to the SPC system. As can be seen, the maximum and minimum CD’s are centered
reasonably around the process target line.

• Figure 3: The CD range (which is the difference between maximum and minimum CD) is
computed and utilized to identify discrepant lots so that engineers can track these lots and
identify problems’ root cause. As shown, three lots seem to have a higher range. That
conclusion was supported by the E-Test results at the end of manufacturing line.

• Figure 4: Analysis module predicts CD’s at all wafer locations to construct a CD wafer map.
As seen, CD changes gradually from one side of the wafer to the other side. That represents a
wafer tilt at towards the 10 O’clock direction.

• Figure 5: In this example, CD values are off target in most locations. That indicated an issue
with the stepper and lot was reworked.

In summary, the analysis module results will enable taking the right decision for material disposition, and
performing robust control by adjusting the tool settings (knobs) so that the process target and specifications
can be achieved. The model was applied to predict the systemic components that cause the CD variation
[16]. The R2R control module applies other models to compute and execute the necessary adjustments by
changing the focus and exposure dose to get the desired levels of CD’s. Results and improvements are
summarized in the following table:

Partition Diff Mean (%) Diff SD (%) Diff Cpk (%)

A -0.4 -44.5 69.2

B 0.12 -56.3 128.7
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This table displays the results of the EFCC (Exposure & Focus CD Control) module [16]. As can be seen,
two data partitions A and B are considered. Each one represents a specific layer and a stepper. The relative
difference in the mean, Standard Deviation (SD) and Cpk are computed before and after tool adjustments.
Looking at the mean (target) difference, the EFCC control did not introduce any change to the mean. For
the SD, there is a significant improvement (~44.5 % and ~56.3 %) when the control module was invoked.
Moreover, the process Cpk improved significantly. In conclusion, applying the model based analysis to the
control module led to significant improvements in the CD Standard Deviation, Process Cpk and kept the
mean almost unchanged.

3.2 Registration (Overlay) Analysis and Control:

As known, yield and performance are dependent on the misalignment between layers (Overlay or
Registration error). Therefore, it is important to develop a model that is capable of analyzing overlay. At,
Intel, such a model was developed, taking registration data as input, performing the necessary calculations
and yielding a set of systemic components utilized to predict the registration. Based on the predicted
registration, the probability of die/wafer/lot failure is computed and pass/fail/rework decisions can be made.
Moreover, the model can capture process drifts, which can be fixed using the R2R control.

The results of the registration analysis for different technologies are shown in Figure 6. As can be seen, the
probability of failure is computed as a function of the specified tolerance which represents the allowed
overlay budget for a layer. As the tolerance increases, the failure potential decreases and as a result, the
associated probability of failure goes down. Although Intel has this analysis module running in its Fabs for
years, every technology generation requires revising this module to enhance its accuracy and add new
systemic components introduced by the newer technology. This graph shows that model 1 which represents
an older technology has higher probability of failure compared to model 2 and 3 that were developed for
newer technologies. This means that, due to the large overlay budget associated with older technologies,
models were simple and used to over predict registration. As an example, at 60 nm threshold (overlay
tolerance), Figure 6 indicates that model 1 and 2 will result in significantly higher probability of failure
which will lead to a wrong decision and definitely an erroneous R2R adjustment.

Looking at Figure 6, we can see several challenges associated with the continuous shrinking of patterning
dimensions (Moore’s law). To overcome this problem, accurate process modeling is needed and tighter
control methods will be required for future technologies. Also, stepper precision in patterning layers should
improve so that the overlay can be reduced. Accurate, precise, sensitive and reliable computational models
should be developed to reduce both alpha and beta risks in the decisions made.

The results of model 3 were fed to an R2R control module which performed an automated adjustment to
the stepper and the mean and standard deviation of the registration were recorded [15]. For an ideal
situation, the mean and the standard deviation of the registration should be zero. The following table proves
that applying the R2R control to adjust the stepper led to an improvement in the mean, standard deviation
and the process Cpk. As shown in that table, two data partitions C and D were considered and results were
compared to after the stepper registration control (SRC) was invoked to adjust the process based on the
results generated by the analysis module.

Partition Diff Mean (%) Diff SD (%) Diff Cpk (%)

C -11.1 -2.6 25.0

D -2.3 -14.5 14.2
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4. PCS STANDARDS

Having a standard way of providing data from the process equipment to the data analysis and process
control applications and then communicating results eases development for both the IC maker and the
application developer. This will provide benefit to all parties and reduce both the development and
implementation costs. In addition, achieving the PCS goals will require effective internal and external
integration of different PCS applications. Also, having many analysis and control modules inside and
outside the tool and the need to communicate between these modules to achieve the robust control require
IC makers, tool suppliers and PCS software supplier to conform to a PCS industry standard [3], [11], [12].
This standard (if adopted) will allow Integrated Circuit makers and suppliers to focus on improved
capabilities rather than customized integration, and decreasing the risk introduced with integrating new
applications into an existing factory.

Intel took the initiative and created with SEMI the PCS SEMI Task Force in 2002. The task force
goal was “to define inline PCS architecture interfaces for run-to-run (R2R), fault detection and
classification (FDC) and statistical process control (SPC) capabilities.” The Task Force developed the
standards and on October, 2003, the PCS Standards ballot was approved and was given the E133 number.
The benefits of such a standard would be reduced systems integration time and cost, and an acceleration of
industry adoption of PCS technology. Manufacturing software suppliers (commercial or in-house) would
use these standards to implement well-defined external interfaces to their process control applications. This
will enable customers to integrate these systems more cost–effectively with one another and with other
software systems required by the wafer fabrication process.

5. Conclusions
With the introduction of silicon nanotechnology, feature sizes are shrinking and as a result, smaller
variations will adversely affect yield, increase non-product runs, rework, and equipment calibration and
maintenance. Aimed at minimizing variability, PCS implementations/applications need to accurately detect,
predict and correct anomalies to achieve the desired levels of process control. That will require precise and
efficient data modeling to enable robust control which will lead to substantial gains in die performance,
yield and fab output. In addition, PCS need to be integrated together to allow commonality leveraging,
sharing data and components. To facilitate data sharing between tools, applications, and to enable PCS
internal and external integration, Intel led the development of the PCS Standards SEMI E133 that was
approved on October, 2003.

Acknowledgement
The authors would like to thank Dr. Joel Fenner, Dr. Cagdas Akturan, Dr. Hazem Hajj and Mrs. Cindy
Morrison for their help in preparing this paper.

REFERENCES

[1] Douglas C. Montgomery, Introduction to Statistical Quality Control. 4th edition, John Wiley & Sons,
Inc. 2001
[2] E. R. Ott, Process Quality Control, McGraw-Hill, New York, 1975
[3] SEMI E133: Provisional Specification for Automated Process Control Systems Interface
[4] G. B. Wetherill and D. W. Brown, Statistical Process Control: Theory and Practice. Chapman and
Hall, New York, 1991
[5] Del Castillo, Enrique and Arnon M. Hurwitz, "Run-to-Run Process Control: Literature Review and
Extensions," Journal of Quality Technology, vol.29, no. 2, p. 184-196, April 1997
[6] John S Baras, and Nital S. Patel, "A Framework for Robust Run by Run Control with Lot Delayed
Measurements," IEEE Transactions on Semiconductor Manufacturing, vol 10, no. 1, February 1997
[7] Youssry Botros, Process Control System Requirements, Intel Document
[8] Youssry Botros, Alex Cameron, Ray Inocencio, Ravi Khairate, Lisa Pivin, Krishna-Prasad Srirama,
and Shaopeng Wang, Process Control Systems Use Cases, Intel Document
[9] Intel PCS Architecture Definition Team, Process Control Systems: Architecture Design Document,
Intel Document
[10] SEMI E93 – Provisional Specification for CIM Framework Advanced Process Control Component

Proc. of SPIE Vol. 5378     5



[11] SEMI Draft Document # 3634, Withdrawal of SEMI E93 – Provisional Specification for CIM
Framework Advanced Process Control Component
[12] Youssry Botros, Alan Weber and James Moyne, “Specification for Integrated Process Control: An
Emerging SEMI Standard from the Process Control Systems (PCS) Task Force to Enable PCS Component
Integration,” The Advanced Equipment Control/Advanced Process Control, Utah, September 2002
[13] Youssry Botros, Guozhong Zhuang, and Krishna-Prasad Srirama, “Integrated Process Control
Systems: Benefits, Requirements, and Architecture,” The Advanced Equipment Control/Advanced Process
Control, France, March 2003
[14] International Technology Roadmap for Semiconductors, Factory Integration and Control System,
2003 Edition
[15] Joel Fenner, Joel Roberts, and Steve Carson, “Stepper Registration Feedback Control in 300mm
Manufacturing,” SPIE Conference, Santa Clara, 2003.
[16] Anju Narendra, Steve Carson, Cynthia Morrison, “Exposure-Focus Critical Dimension Feedback

Control in 300mm Manufacturing Technologies,” SPIE Conference, Santa Clara, 2003.

Figure 1: Functional Components of a PCS System
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Figure 2: Predicted Maximum and Minimum CD across different lots

Figure 3: Predicted CD Range across lots to identify high range ones
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Figure 4: Predicted CD Wafer Map for a production wafer

Figure 5: Predicted CD Wafer Map for a production wafer
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Figure 6: Probability of Failure as a function of the layer Threshold (tolerance). Models for three
technologies were compared
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