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ABSTRACT 
 

The technologies of Josephson-junction-based qubits have been progressing rapidly, ever since its first demonstration 
by a superconducting charge qubit1. A variety of systems have been implemented2-5 with remarkable progress in coherence 
time and read-out schemes. Although the current level of this solid-state device is still not as advanced as that of the most 
advanced microscopic-system-based qubits6, 7, these developments, together with the potential scalability, have renewed its 
position as a strong candidate as a building block for the quantum computer8. Recently, coherent oscillation9 and microwave 
spectroscopy10 in capacitively-coupled superconducting qubits have been reported. The next challenging step toward 
quantum computation is a realization of logic gates11, 12. Here we demonstrate a conditional gate operation using a pair of 
coupled superconducting charge qubits13. Using a pulse technique, we prepare different input states and show that they can 
be transformed by controlled-NOT (C-NOT) gate operation in the amplitude of the states. Although the phase evolution 
during the gate operation is still to be clarified, the present results are a major step toward the realization of a universal 
solid-state quantum gate. 
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1. COUPLED COOPER-PAIR-BOX QUBITS 
 

Cooper-pair box provides an artificial two-level system where two charge states, say |0> and |1>, differing by 2e of one 
Cooper-pair (e is the electronic charge) are coherently superposed by Josephson coupling14. When two Cooper-pair boxes 
are connected by a capacitor, the quantum states of the boxes interfere with each other. This results in quantum beatings, as 
has been demonstrated recently9. Using this coherent four-level system formed by the charge states |00>, |01>, |10>, and 
|11>, we show how to implement a logic gate and demonstrate that it works as a quantum gate. 

A scanning electron micrograph of the sample is shown in Fig. 1a. The qubits were fabricated by electron-beam lithography 
and three-angle evaporation of Al on a SiNx insulating layer above a gold ground plane on the oxidized Si substrate. The 
two strips enclosed by red lines are the Cooper-pair boxes, which are coupled by an on-chip capacitor9. φex represents 
magnetic flux penetrating the SQUID loop. An electrode between two pulse gates is connected to the ground to reduce the 
cross capacitance. Although there is a finite cross capacitance between one gate and the other box (about 15% of the main 
coupling), it does not play any essential role in the present experiment and so we can neglect it in this paper. The sample 
was cooled to 40 mK in a dilution refrigerator. The characteristic energies of this sample estimated from the d.c. current-
voltage measurements are Ec1 = 580 µeV, Ec2 = 671 µeV and Em = 95 µeV. From the pulse measurements, EJ1 is found to be 
45 µeV at a maximum and EJ2 to be 41 µeV. The superconducting energy gap is 209 µeV. Probe junction tunnel resistance 
is equal to 48 M� (left) and 33 M� (right). Two qubits are electrostatically coupled by an on-chip capacitor9. The right 
qubit has SQUID (superconducting quantum interference device) geometry and we use this qubit as the control qubit and 
the left one as the target qubit. Unlike the previous coupled-qubit sample9 there are two independent pulse gates so that we 
can address each qubit individually. This is essential to the logic operation, as explained below.  

In the two-qubit charge basis |00>, |10>, |01> and |11>, the hamiltonian of the system is given as 
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 (1) 
where EJ1 (EJ2) is the Josephson coupling energy of the first (second) box to the reservoir, En1n2 = Ec1(ng1–n1)² + Ec2(ng2–n2)² 
+ Em(ng1–n1)(ng2–n2) is the total electrostatic energy of the system (n1, n2 = 0, 1 is the number of excess Cooper pairs in the 
first and second boxes, and ng1,2 are the gate-induced charges on the corresponding qubit divided by 2e). 
Ec1(2) = 4e²C��(1)/2(C��C�� – Cm²) are the effective Cooper-pair charging energies (C�1(2) are the sum of all capacitances 
connected to the corresponding island including the coupling capacitance Cm between two boxes). Finally, 
Em = 4e²Cm/(C��C�� – Cm

2) is the coupling energy. In our notation of | n1, n2> for the charge basis, n1 and n2 represent the 
states of the control and target qubits, respectively.  

 

2.  CONTROLLED-NOT OPERATION 
 

Figure 1b represents the idea for the gate operation. Using Eq. 1, we calculate the eigenenergies of the two-qubit system and 
plot them in the planes ng1= ng1

0 and ng2= ng2
0, where ng1

0 and ng2
0 are constants. Here (ng1

0, ng2
0)=(0.24, 0.26), 

 
 

Figure 1 a, Scanning electron micrograph; b, Energy band diagram; c, Pulse sequences used of the CNOT device13. 
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corresponding to the actual experimental condition. In the energy band diagram, black lines show the eigenenergies. The 
four coloured lines are the charging energies of the states shown in the cells of the charging diagram of the base plane with 
the corresponding colour. In these planes, if (ng1

0, ng2
0) is sufficiently far away from the co-resonant point9 (0.5, 0.5), four 

energy bands can be regarded as two pairs of nearly independent single-qubit energy bands. In the plane of ng1= ng1
0, for 

example, our system is divided into a pair of independent two-level systems |00>, |01> and |10>, |11>. Importantly, the 
charging energies of each of the two-level systems degenerate at different ng2, namely, at ng2L for the states |00> and |01> 
and at ng2U for the states |10> and |11> as shown in Fig. 1b. This difference (δng2) originates from the electrostatic coupling 
between the qubits and is given as Em/ 2Ec2. Similarly, we define ng1L and ng1U as shown in the plane of ng2= ng2

0.  

Now we consider the pulse operation. Applying pulses to Pulse gate 1 (2) shifts the system non-adiabatically in the plane of 
ng2= ng2

0 (ng1= ng1
0). For convenience, we define the distances from (ng1

0, ng2
0) to the degeneracy points as follows: δnp1L= 

ng1L-ng1
0, δnp1U= ng1U-ng1

0 and δnp2L= ng2L-ng2
0. Suppose we start from the |00> state (point A) and apply an ideal rectangular 

pulse with an amplitude Vp2L=2e δnp2L/Cp2 to Pulse gate 2, where Cp2 is the capacitance between Pulse gate 2 and Box 2. 
This pulse is represented by the arrow in the ground-state charging diagram15 of the base plane. In this case, the system is 
brought to the degeneracy point ng2L and evolves during a pulse duration ∆t with a frequency Ω=EJ2/� between the |00> and 
the |01> states: cos(Ω ∆t/2) |00>+ sin(Ω ∆t/2) |01>. By adjusting ∆t so that Ω ∆t =π (π pulse), we can stop the evolution 
when the system is in the |01> state. The system is finally in the state at point C after the termination of the pulse.  

On the other hand, if we start from the |10> state (point B) and apply the same pulse, the system does not reach the 
degeneracy point for states |10> and |11> (ng2U). In this case, the amplitude of the oscillation between the |10> and the |11> 
states is suppressed by EJ2

2/(Em
2+EJ2

2). If Em is sufficiently large, the state |10> remains almost unchanged (except for the 
phase factor), coming back to point B after the termination of the pulse. Similarly, we can realize the transition from the 
|01> state to the |00> state by the same pulse, and suppress the transition out of the |11> state. Therefore, conditional gate 
operation can be carried out based on this operation pulse: the target bit is flipped only when the control bit is |0>.  

To experimentally demonstrate the above gate operation, we prepare different input states from the ground state |00> by 
applying pulses and measure the output of the gate operation. Figure 1c shows two pulse sequences that are utilized in the 
present experiment. For convenience, each of the pulses in the sequences is labelled by an index m (m=1, …, 4 , 5), which 
we will refer to as “Pulse m”. In both sequences, the upper and lower patterns show the pulse patterns applied to Pulse gates 
1 and 2, respectively. The expected quantum states after each pulse are also shown. The symbols |0> or |1> with subscripts 
C and T mean the state of the control and target qubits, respectively. In sequence (i) of Fig. 1c, a superposition of the states 
|00> and |10> is created by applying Pulse 1 with the amplitude Vp1L=2e δnp1L/Cp1, where Cp1 is the capacitance between 
Pulse gate 1 and Box 1. In sequence (ii) of Fig. 1c, a superposition of the states |01> and |11> is created by two sequential 
pulses. First, Pulse 3, the same pulse as that for the gate operation, brings the system to the |01> state at point C. Then, Pulse 
4 with amplitude Vp1U=2e δnp1U/Cp1 is applied.  

In both sequences, an operation pulse (Pulse 2 or 5) creating an entangled state (α|01>+β|10> or α|00>+β|11>) is applied 
after the preparation pulses. To change the coefficients α and β, we change the Josephson energy of the control qubit EJ1 by 
a magnetic field, while keeping the pulse lengths constant. Because the control qubit has SQUID geometry, EJ1 is 
periodically modulated as EJ1=EJ1max|cos(π φex/φ0)|, where EJ1max is the maximum value of EJ1 and φ0 is the flux quantum. By 
repeatedly applying the sequential pulses (with a repetition time Tr=128 ns), we measure the pulse-induced currents through 
Probes 1 and 2, which are biased at ~650 µV to enable a Josephson-quasiparticle (JQP) cycle16. These currents are 
proportional to the probability of the respective qubit having one extra Cooper pair1, 9.  

 

3.  EXPERIMENTAL RESULTS 
 

Figure 2 shows the output currents of the control qubit (IC) and the target qubit (IT) as a function of φex/φ0 under the 
application of pulses shown in Fig. 1c (i). When no pulse is applied, both qubits show a finite current due to the finite 
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width of the JQP peak (red curves in Fig. 2). Because this current depends on the Josephson energy, IC is periodically 
modulated by φex. First, we determine the length of the operation pulse (Pulse 2) by adjusting it to the peak in the single-
qubit oscillation of IT. When we apply Pulse 2 of this length (blue curves in Fig. 2), IT is enhanced and does not depend on 
φex, as was expected. Also, this pulse has no effect on IC. Next, we apply the preparation pulse (Pulse 1) only. This pulse, in 
turn, induces current in IC while not affecting IT (green curves in Fig. 2). Furthermore, the magnitude of the induced current 
depends on φex, indicating that input states with different coefficients α  and β are prepared. Finally, we apply both Pulse 1 
and Pulse 2 with an interval of 85 ps (orange curves in Fig. 2). In this case, IC shows the same dependence as that when only 
Pulse 1 is applied. However, IT also shows clear dependence on φex and is anti-correlated with IC as the target qubit feels the 
state of the control qubit. In Fig. 3(a), we re-plot this data as a function of EJ1. We present only pulse-induced currents by 
subtracting the d.c. background currents from each curve. Both IT and IC show cosine-like dependence but their phases are 
opposite. That is, IT is maximal when IC is minimal, and vice versa. This is consistent with the expectation that the state 
α|01>+β|10> is created by the utilized pulse sequence. The lengths of the pulses in Fig. 1c (ii) are ∆t3=264 ps, ∆t4=88 ps, 
∆t5=264 ps, ∆t34=88 ps and ∆t45=88 ps. The black curves represent the simulation obtained by calculating the time evolution 
of the density matrix. In the calculation, we assumed a trapezoidal pulse shape with both rise and fall times equal to 40 ps, 
which is close to the real pulse shape. To take into account the effect of dephasing, all the off-diagonal terms of the density 
matrix are set to zero before applying the operation pulse. This is a reasonable approximation because the dephasing time at 
an off-degeneracy point is reported to be a few hundred picoseconds17, which is comparable to the time needed for the input 
preparation for the present experiment. We did not take into account the energy relaxation, which is known to be much 
slower. 

 
Figure 2. Magnetic-flux dependence of current of the control (top) and target (bottom) qubits under the application of pulses13.. 
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Next we measure φex dependence of IC and IT for pulse sequence (ii) of Fig. 1c (not shown) and plot it as EJ1 dependence in 
Fig. 3 (b). In this case, like in Fig. 3 (a), IT and IC show cosine-like dependence. However, most importantly, their 
correlation is now opposite to that in Fig. 3 (a). This is consistent with the expectation that the state α |00>+β|11> is created.  

The above data shows that we have succeeded with the conditional gate operation. However, to understand more 
quantitatively, we compare the data with simulation data obtained by numerically calculating the time evolution of the 
density matrix. The results of the simulation are shown as black curves in Fig. 3. Here, we stress that no fitting parameters 
are used in the calculation.  

First we consider the target qubit. Apart from the offset in Fig. 3(a), the simulated curves agree well with the experiment, 
suggesting that the oscillation amplitude of the measured IT is reasonable. On the other hand, we have some discrepancy in 
IC. We attribute this discrepancy to the unknown current channel in our present read-out scheme. As long as the JQP process 
is considered, the pulse-induced current should not be able to exceed 2e/Tr=2.5 pA, but in reality it does. This means that 
the pulse-induced current has an extra component that does not originate from the JQP process. We do not yet know the 
origin of this current. It may be other processes involving higher-order Cooper-pair tunnelling. The magnitude of this 
current probably depends on the Josephson energy (but does not depend strongly on the pulse length) and produces the EJ1-
dependent deviation between the simulated and measured curves. In the target qubit, the similar current channel simply 
gives a constant offset in Fig. 3 as EJ2 is fixed and does not affect the overall EJ1-dependence. Although 

 
Figure 3. Pulse-induced current as a function of the Josephson energy of the control qubit13. 
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quantitative analysis for IC is difficult at present, the simulation suggests that the oscillation amplitude of the measured IT is 
reasonable, while that of IC is enhanced by this extrinsic factor originating from the imperfection of our read-out scheme. 

 

4.  EFFICIENCY 
 

Finally, we estimate the accuracy of our gate operation and propose possible ways for improvement. Our present read-out 
scheme, which does not allow us to measure the probability of the four states individually9, makes it difficult to obtain the 
complete truth table of our gate operation solely from the experimental data. Instead, here we do it based on the simulation 
that turned out a reasonable description of our two-qubit system, as shown in Fig. 3. We calculate the time evolution of four 
perfect input states, |00>, |01>, |10> and |11> under the application of the operation pulse, namely Pulse 2 or 5 in Fig. 1(c) 
and plot the output probabilities as solid blue bars in Fig. 4. Detailed values of the probabilities are: 



















97.0018.0007.0003.0

018.097.0004.0004.0

007.0004.037.062.0

003.0004.062.037.0

.  

Ideally, they should be: 



















1000

0100

0001

0010

.  

Figure 4. Truth table of the present C-NOT operation estimated by the numerical calculation13. 
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We can partly see the correspondence of this figure to the experimental data in Fig. 3. Because the prepared input state in 
sequence (i) of Fig. 1c is almost pure |00> state when EJ1 equals zero, the IT at EJ1=0 in Fig. 3a normalized by the possible 
maximum current 2e/Tr (2.5 pA) should be close to 0.62 (the second element of the first column of the above truth table). 
The experimental data gives a slightly larger value ~0.8. This is attributed to the leak current discussed in the text. For the input states 
of |10> and |11>, our gate operation is almost ideal. Note that the accuracy is better than that expected for the case of the 
ideal pulse shape, that is 1- EJ2

2/ (Em
2+ EJ2

2) ~ 0.84. This is due to the finite rise/fall time (40 ps) of the operation pulse, 
which suppresses the unwanted oscillation. On the other hand, for the input states of |00> and |01>, the output states have an 
unwanted component of |00> or |01> with a rather high probability. This is also due to the finite rise/fall time, which in this 
case suppresses the desired oscillation. To improve this, increasing Em as well as making the pulse shape ideal would be the 
best solution. However, even with the present value of Em, the simulation suggests that this matrix becomes much closer to 
the ideal one (keeping almost ideal outputs for |10> and |11> input states) if we slightly decrease the rise/fall time, say by 
25% (red lines in Fig. 4), or decrease EJ2 by a similar amount. The red lines and arrows in Fig 4 indicate the expected 
improvement after decreasing the rise/fall time of the pulses from 40 to 30 ps. 

 

5.  CONCLUSIONS 
 

In conclusion, we controlled our two-qubit solid-state circuit by applying a sequence of pulses and demonstrated the 
conditional gate operation. Although in the present experiment we paid attention only to the amplitude of the quantum state, 
phase evolution during the gate operation should also be examined for the realization of the quantum C-NOT gate (probably 
with additional phase factors), which is a constituent of the universal gate.  
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