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ABSTRACT 

The design of beam-shaping pupil filters most commonly employs the scalar theory of diffraction, which does not 
accurately describe the focal field distribution under high numerical aperture focusing.  To account for the full vector 
character of the field, we have developed computational algorithms for designing phase-only pupil filters that 
incorporate the electromagnetic theory of diffraction.  These algorithms use the method of generalized projects or 
particle swarm optimization to generate phase-filter solutions based on a targeted focal field irradiance distribution.  
Computational results are presented that demonstrate how these procedures can be used to design phase filters that re-
shape the transverse beam, or achieve axial super-resolution for a single focused spot.  The methods can be applied in 
the design of beam-shaping and superresolving optics used for imaging, direct laser writing, and lithography. 
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1. INTRODUCTION 
Diffractive optical elements (DOEs) are pupil filters (Fig. 1) that can be used to modify the amplitude, phase, and 

polarization of an incident beam so that it focuses into an irradiance distribution – or point spread function (PSF) – that 
is modified relative to the diffraction limited pattern.1-3  Incorporating DOEs into optical systems is increasingly 
common as they can greatly enhance performance in a wide range of applications, including optical lithography, laser-
based materials processing, direct laser writing, surgical applications, and optical data storage.4  The term “beam 
shaping” is most frequently applied to situations in which a DOE is used to modify the irradiance distribution within the 
geometric focal plane (transverse PSF) without concern for accompanying changes in the direction of focused beam 
propagation (the axial direction).  Applications of axial beam shaping include lengthening the axial PSF (extended depth 
of focus) or decreasing the axial extent below the diffraction limit to achieve axial superresolution.  Modifying the PSF, 
particularly superresolving transversely or axially, creates undesirable side-lobes and/or re-distributes optical power 
outside of the region of interest.  Because an arbitrary PSF is not necessarily a solution to the wave equation, it may not 
be possible to generate the targeted irradiance distribution exactly.  Designing a beam shaping DOE is thus an inverse 
optimization problem that involves finding a solution that offers a satisfactory compromise between formation of the 
targeted PSF and minimization of unwanted features.  The problem is ill-posed because the form of the DOE that most 
closely yields the targeted PSF may not be unique.  Given that a two-dimensional DOE affects the entire three-
dimensional (3D) irradiance distribution, transverse and axial features in the PSF are inextricably linked, so 
simultaneously engineering the axial and transverse PSF, or 3D beam shaping, is even more challenging. 

Many excellent scalar techniques have been reported for designing beam shaping DOEs.  These are based on 
methods that include geometric mapping,5, 6 analytical solution,7 iterative processes,8-11 and genetic optimization.12  
Although exceptional results have been achieved with these algorithms, they are all based on scalar diffraction theory, 
and as such are only valid in the paraxial domain of diffractive optics.13  For systems with high numerical aperture (NA), 
depolarization effects are significant,14 so vectorial diffraction theory must be used in the DOE design process.  This 
becomes particularly challenging because the overall beam shape is determined by the summed intensity of the x-, y-, 
and z-polarized fields.  Although the field components are orthogonal, they are not entirely independent because each is 
reshaped by a common DOE.  As a result, the DOE must be designed so that it collectively reshapes Ix, Iy, and Iz such 
that their sum Ix + Iy + Iz = If tends toward It.  Given that high-NA systems are increasingly employed in frontier 
technologies, further applications of beam shaping require the development of accurate vectorial methods for transverse, 
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axial, and 3D beam shaping.  This work overviews several vectorial beam shaping algorithms we have developed for the 
design of axially superresolving and transverse-field shaping phase-only DOEs. 

 
Fig. 1. Optical setup of the beam shaping problem.  The aperture represents the input pupil of the high-NA objective lens.  

For transverse beam shaping, the geometric focal plane can be divided into two regions.  Area Ω represents the 
region of interest that contains and bounds the targeted transverse profile.  Its complement Ω c  represents the 
remainder of the focal plane. 

2. THEORY 
The optical geometry considered throughout this work (Fig. 1) consists of the DOE and an aberration free high-NA 

lens having focal length f.  The two are positioned such that their optical axes are collinear with the z-axis of a Cartesian 
coordinate system whose origin is located at the geometric focus of the lens.  The numerical aperture of the lens is 
NA = 1.4.  Monochromatic linearly polarized plane waves having a vacuum wavelength of λ = 800 nm and electric field 
vector parallel to the x-axis propagate along the z-axis, passing through the DOE and entering the pupil of the lens.  The 
light focuses into a medium of refractive index n = 1.516.  In the absence of the DOE, this situation is consistent with 
common applications of high-NA oil-immersion objective lenses.  

Starting from the vector diffraction integrals,15, 16 the electric field at an arbitrary point P(xf , yf, zf) within the 
geometric focal plane (z = 0) represented as17 
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(1) 

and the corresponding irradiance is I = (1/2)ncε0|E|2.  The speed of light and electric permittivity in vacuum are c and ε0, 
respectively.  A transversely shaped beam is the spatial map of the focused irradiance If(xf, yf) for all P(z = 0)  The wave 
number is kt = 2π/λ = [kx

2 + ky
2 + kz

2]1/2, with kx, ky, and kz being the plane wave components, and λ is the wavelength 
within the medium.  The NA of the lens system sets kmax = ktNA/n.  The function T(kx, ky)exp[iΦ(kx, ky)] describes the 
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transmission amplitude (T) and phase (Φ) of the DOE.  The amplitude of the incident electric field Ein is assumed to be 
spatially constant, so this term is brought outside the integral.  The focal plane can be divided into a region of interest Ω 
and its complement Ω c .  A targeted transverse beam shape It, such as a top-hat distribution, can be thought of as wholly 
contained and bounded by Ω. 

If the DOE is assumed to be radially symmetric, the vector diffraction integrals may be expressed in a cylindrical 
coordinate system.  The electric field distribution at point P(r, z, ϕ) near the geometric focal is given by16, 18 

 ( ) ( ) ( ) ( ) ][ ˆ cos12ˆ 2sin2ˆ2cos20 ,, z -yx ϕϕϕϕ IiIIIizrE A ++= . 
 
(2) 

I0,1,2 are integrals evaluated over the aperture half-angle θ as 

 ( ) ( ) ( ) ( ) ( ) θθθθθθθα dztikrtkJtrzI cosexpsincos1sincos, 000 ∫ += , (3) 

 ( ) ( ) ( ) ( ) θθθθθθα dztikrtkJtrzI cosexpsinsincos, 10
2

1 ∫= , (4) 

 ( ) ( ) ( ) ( ) ( ) θθθθθθθα dztikrtkJtrzI cosexpsincos1sincos, 2 02 ∫ −= . (5) 

Variables r and z represent the radial and axial coordinates, respectively.  Angle ϕ is that subtended by the electric field 
vector of the incident field and the meridian plane in which the field distribution is calculated.  The maximum aperture 
half-angle angle α = arcsin(NA/n), is determined by the numerical aperture of the lens and n.  The constant A = πEinf/λ.  
In this representation, the DOE complex transmission function is described by t(θ).  If we are concerned with only the 
axial field distribution, Eaxial(z), we may set r = 0 in Eqs. 2 – 5, giving 

 ( ) ( )dqikzqqqqtiAzE q
qaxial  exp 1 )()( )(

)0(∫ += α , (6) 

where q = cosθ.  The normalized radius of the aperture, r, and q are related by r = n(1 - q2)1/2/NA. 

3. OPTIMIZATION METHODS 
3.1 Method of generalized projections 

Given a set of solution constraints Cγ (γ = 1,2,…, η), the Method of Generalized Projections (MGP) seeks a solution 
function S by iteratively projecting onto constraints according to Sχ+1 = P1P2…PnSχ,,19 where χ is an iteration index, S0 is 
an initial function, and Pγ is a projection operator that maps S onto its nearest neighbor in Cγ.  In the context of beam 
shaping, each solution S corresponds to an irradiance distribution Iχ calculated in iteration χ using the vector diffraction 
integrals based on a trial DOE complex transmission.  The constraints define the targeted profile, It, and may include 
terms relevant to the DOE complex transmission function, such as a restriction to binary phase-only DOE profiles.  
During each iteration, the suitability of the trial DOE solution is judged based on a fitness parameter.  When constraints 
are inconsistent (meaning all cannot be satisfied simultaneously), the MGP yields a solution that most nearly satisfies the 
set of requirements.19 

3.2 Particle swarm optimization 

PSO is a nature-inspired method for optimizing nonlinear functions motivated by the idea that individuals in a 
population can evolve based on information gathered through their own experience and that of the group.20  The 
individuals and the group are referred to as particles and the swarm, respectively.  During optimization a randomly 
generated swarm searches the solutions space for the “best” solution.  Each iteration, solutions are compared using a 
fitness parameter, and the position and velocity of the i-th particle are updated based on the best solution it found, bi, and 
the overall best position bG found by the swarm.  The comparison and update are applied to all particles and repeated 
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over many iterations.  The update process is then an aggregated acceleration of the i-th particle towards the best position 
identified by the ensemble. 

4. AXIAL BEAM SHAPING 
Previously we reported how PSO can be applied for designing N-zone radially symmetric binary phase-only DOEs 

that axially superresolve the PSF.21  The on-axis irradiance, Iaxial, for diffraction-limited focusing (no DOE) consists of a 
main lobe that peaks at the focal plane and side lobes that decrease in magnitude with distance from the focal plane.  A 
properly designed DOE can superresolve the axial width of the main lobe, but this is accompanied by an increase in 
intensity of the side lobes.  The degree of superresolution achieved with a given DOE can be characterized by parameter 
G, defined as the full-width at half-maximum (FWHM) of superresolved Iaxial divided by that of diffraction limited Iaxial.  
The magnitude of side-lobe increase can be quantified using a second parameter M, defined as the ratio of the peak 
intensity of the largest side lobe versus that of the main lobe.  For many applications, large side lobes are not tolerable, 
so axial superresolution also requires optimizing the degree of achievable superresolution against the associated increase 
in side lobe intensity.  Axial super-resolution can be viewed as a combinatorial problem in which fields originating from 
multiple zones of the DOE are added or subtracted to give Eaxial having minimum G for a fixed limit on side lobe 
intensity Mlim. 

In our application of PSO, the binary phase DOE evaluated consisted of 100 equal-width zones, corresponding to an 
overall solutions space of 2N-1 ≈ 6.3 × 1029 unique DOEs.  The solutions space was searched by a swarm of 40 particles 
to find that DOE which offers the best superresolution (lowest G) and side lobe intensity constrained to M ≤ Mlim.  The 
position of each particle within the space corresponds to a trial DOE.  For each trial DOE, Eq. 6 was to used to calculate 
Iaxial, G, and M.  The position and velocity of each particle were then updated based on each particle’s best solution 
(lowest G and M ≤ Mlim) and the overall best solution found by the swarm.  The process was continued through 10,000 
iterations.  

 Figure 2 shows the PSF generated by a DOE optimized with Mlim = 0.5.  The central lobe FWHM is decreased by 
34% relative to the diffraction-limited pattern, and the relative side lobe intensity is held below M = 0.5.  To our 
knowledge this is the highest single-beam axial super-resolution calculated for a phase DOE with the given limit on side 
lobe intensity.  Interestingly, the transverse FWHM of the central lobe increases by only 5% with respect to the 
diffraction limit, so lateral resolution is not sacrificed.  The combined effect of axial super-resolution and minimal 
transverse broadening causes the central lobe to become more spherical.  The ratio of the transverse to axial FWHM is 
0.78.  A more spherical PSF is desirable for many focused laser applications, such as multi-photon imaging and direct 
laser writing. 

 
Fig. 2. PSF within the plane of incident polarization generated by (a) the axially super-resolving DOE obtained with PSO 

(G = 0.66, M = 0.50) and (b) for diffraction limited focusing (no DOE). 
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 Previously, we reported the first vectorial algorithm for optimizing G and M based on the Method of Generalized 
Projections (MGP).22  Although that method yields excellent results, it is not guaranteed to find the global solution 
because MGP is susceptible to “traps” and “tunnels” that can cause the algorithm to stagnate in local minima.  The best 
DOE found using MGP offers G = 0.71 and M = 0.52.  It is noteworthy that PSO outperforms MGP by finding a solution 
that offers both higher super-resolution and smaller side lobes.  This can be attributed to the well known ability of PSO 
to avoid becoming trapped in local minima.20, 23 

5. TRANSVERSE BEAM SHAPING 
Many applications require re-shaping the transverse profile of a focused laser beam using a DOE.  But doing so 

under high-NA conditions presents considerable challenge because the vector character of the field cannot be neglected.  
Even in the simplest case of a linearly polarized input field, high-NA focusing directs significant optical power into the 
other two field polarizations.  For example, evaluating Eq. 1 and integrating Ix, Iy, and Iz over the entire focal plane 
shows that their fractional power content is 0.74, 0.01 and 0.25, respectively.  So, high-NA beam shaping requires that 
we identify a DOE phase function Φ that generates a focal plane field distribution such that the sum of the x-, y-, and 
z-polarized irradiance Ix + Iy + Iz = If, matches the targeted irradiance It for all positions in the focal plane.  An exact 
match is generally not possible because it is not known a priori that arbitrary It is a solution to the wave equation.11  The 
problem is further complicated because Φ  affects each of Ex, Ey, and Ez, so the field components are not truly 
independent.  This problem cannot be solved analytically, so iterative numerical techniques must be employed.  MGP is 
particularly well suited to this type of problem because it can find solutions that closely satisfy sets of inconsistent and 
non-physical constraints.24 

 We have shown how the MGP can be applied to vectorial transverse beam shaping in the design of analog phase-
only DOEs for use under high-NA focusing.17  For many applications the optimum transverse irradiance distribution 
consists of a flat-top profile having a defined geometry within the focal plane.  We demonstrated our vectorial transverse 
beam shaping algorithm by applying it to the problem of re-shaping a circularly apodized flat-top input beam into a 
focused square flat-top irradiance distribution.  The targeted intensity in the focal plane is given by: 

 ( ) ( ) },for   0     ;,for   1{ c
tI ΩηξΩηξ ∈∈= , (7) 

where ξ,η are normalized coordinates within the focal plane, and the limits of Ω are set to -0.25 ≤ ξ,η ≤ 0.25.  The 
diffraction integrals in Eq. 1 are used to interrelate the DOE phase profile and the resulting vectorial electric field in the 
focal plane.  The integrals are evaluated using the chirp-z transform25 to improve computational speed and accuracy.  In 
each iteration, the constraint associated with the targeted irradiance distribution is applied only to the x-polarized field 
using 

 [ ] Ωηξηξφηξηξηξγ
ε

ηξ ∈−−= ),(for       )],(exp[),(),(),(2),(
0

xzytx iIII
nc

E , (8) 

whereas the following are left unchanged: |Ex(ξ, η)| outside Ω; |Ey(ξ, η)| and |Ez(ξ, η)| across all Ω + Ω c; and the phases 
φ (ξ, η) of all field components in Ω + Ω c.  This approach takes into account the effect of the DOE on all field 
components in the focal plane and directs the DOE complex transmission toward a form that satisfies Eq. 7.  The scalar γ 
augments |Ex(ξ, η)| in Ω relative to that in Ωc.  This operation provides a means for slowly pulling energy from Ω c 
into Ω.8  In this work γ  = 1.03 was used for all iterations.  The quality of the reshaped PSF is characterized each iteration 
in terms of the diffraction efficiency, κ, and uniformity error, δ.26  The diffraction efficiency quantifies the fraction of 
total optical power directed into the targeted region of interest, and the uniformity error provides a measure of flatness in 
the intensity distribution across that region.  High diffraction efficiency and low uniformity error are known to be 
mutually exclusive characteristics that must be considered jointly in optimizing DOEs.  Iterative projection of constraints 
in the pupil and focal planes progressively forces the simulation toward a DOE phase profile that generates the targeted 
beam shape.  This process continues until the algorithm converges to a suitable solution or until a fixed number of 
iterations are completed. 

Figure 3 shows the normalized focal irradiance distributions of the three polarization components, Ix, Iy, and Iz, and 
the total focal irradiance distribution If generated by the DOE phase profile of Fig. 4.  This DOE and the associated 
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irradiance distributions were obtained after 600 iterations.  The overall beam shape is square as intended with δ = 7% 
and κ = 74.5%, indicating that it has good uniformity and power confinement within Ω. 

      

       
Fig. 3. (a) Calculated irradiance distribution resulting when a circularly apodized flat-top input beam is passed through the 

phase-only DOE shown in Fig. 4 and focused using a 1.4-NA objective.  The DOE was designed to reshape the 
beam into a flat-top square irradiance pattern of area 50λ × 50λ.  (b) - (d) Irradiances of the constituent x-, y-, and 
z-polarized components of the total field.  Each profile is normalized to the peak of If. 

 

 
Fig. 4. DOE phase profile that generates the focal irradiance distributions shown in Fig. 3.  The phase is plotted in units of 

radians.  
 

In contrast, the irradiance distributions of the constituent polarizations are non-uniform.  Ix most resembles the 
targeted profile, but appears doubly concave, as though squeezed along the x-axis.  Although Ix is non-zero across the 
coordinate axes, Iy and Iz have node(s) at these positions where their field amplitudes drop to zero.  Iy is most complex, 

(a)  If = Ix + Iy + Iz (b)  Ix 

(c)  Iy (d)  Iz 
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appearing approximately four-fold symmetric with power concentrated in the corners of Ω.  Iz exhibits two-fold 
symmetry with a single nodal plane lying along the y-axis.  The regions of high irradiance in Iy and Iz fill in around the 
edges of the x-polarized profile making the total irradiance distribution If uniform and square.  These profiles show that 
the vector diffraction algorithm successfully generates a DOE for which all polarization components of the field are 
reshaped concurrently to achieve a targeted irradiance distribution under high-NA focusing. 

6. CONCLUSION 
Many of the optimization methods that have been so successfully applied for scalar beam shaping may also be used 

for vectorial DOE design, if the problem is suitably formulated.  In this work, we have shown how the popular MGP 
algorithm can be used for transverse beam shaping.  We have also introduced the PSO algorithm as a powerful new tool 
for optimizing DOEs, and we have shown how it can be used for axial beam shaping.  One next logical step in this work 
would be to extend these methods for full three-dimensional vectorial field synthesis.  Vectorial beam shaping remains a 
complex problem in part because fundamental knowledge is lacking of how focal field patterns and phase mask structure 
are related.  Although the optimization tools discussed here can generate suitable solutions, they do not in and of 
themselves provide this insight.  Further research, perhaps aided by these optimization methods, is necessary to improve 
our fundamental understanding of vectorial beam shaping. 
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