Polarization scramblers in Earth observing spectrometers: lessons learned from Sentinel-4 and 5 phases A/B1

Jérôme Caron
Jean-Loup Bézy
Grégory Bazalgette Courrèges-Lacoste
Bernd Sierk
et al.
Abstract—Sensitivity to polarization is a major design driver for Earth observing dispersive spectrometers. While the measured Earth radiance observed from space in the UV, visible and near IR bands has a strong and highly variable linearly polarized component, most essential components in spectrometers are inherently sensitive to polarization: scan mirrors, gratings, dichroics. Minimisation of the resulting radiometric errors is a challenge and cannot be only achieved with careful optical designs. Depolarization by passive optical components such as birefringent polarization scramblers has been demonstrated with the last generation of atmosphere monitoring instruments (MERIS, OMI). In order to achieve the demanding performances targeted by future instruments (Sentinel-4, Sentinel-5, CarbonSat) the available degrees of freedom left for optimisation shall be explored, and new polarization scrambler designs must be found.

This paper summarizes design rules and performance aspects identified by ESA during phases A/B1 of the Sentinel-4 and Sentinel-5 missions. The following aspects have been investigated and will be discussed: minimization of polarization dependent spectral oscillations, use of a polarization scrambler in converging beam or parallel beam at large angles of incidence, polarization dependent pointing error.

Keywords—spectrometer, polarization, depolarizer, scrambler, Sentinel-4, Sentinel-5.

I. INTRODUCTION

In the frame of the GMES (Global Monitoring for Environment and Security) initiative, ESA is supervising the development of two high resolution spectrometers dedicated to the monitoring of the Earth’s atmosphere: Sentinel-4 and Sentinel-5. The characteristics of these instruments (called hereafter S4 and S5) are summarized in table 1: S4 is a scanning spectrometer on board the geostationary satellite MTG-S (Metosat Third Generation - Sounder) scheduled for launch in 2019 [1]; while S5 is a pushbroom instrument that will fly on a low altitude Earth orbit (LEO) on board Metop-SG (Metop Second Generation) planned for launch at the end of 2020.

Comparing to the previous generation of atmosphere monitoring instruments, with SCIAMACHY on board Envisat, and GOME-2 on board Metop, S4 and S5 are targeting notably improved temporal, geometrical, spectral and radiometric performances. It has been early recognized that the demanding instrument characteristics require in particular a high immunity to the polarization of the observed radiation. In the spectral bands of interest extending from 270nm to 2385nm, Rayleigh scattering is a strong source of polarization, although at the largest wavelengths weaker effects such as sunglint, reflection on ice clouds or ground reflection may become more important. Below 1000nm where Rayleigh scattering clearly dominates, the observed polarization is almost perfectly linear and largely imposed by the measurement geometry (between Sun, Earth and satellite). At first order, one can assume that the angle of polarization direction is spectrally constant for a given observation and illumination geometry, and the degree of polarization (DOP) depends on the amount of unpolarized signal coming in but cannot exceed the DOP observed for pure Rayleigh scattering.

Figure 1. Spectral variations of the degree of polarization (DOP) observed by Sentinel-5 at its descending node, on both edges of the instrument swath. A mid-latitude summer AFGL profile is assumed, with a layer of continental aerosol with optical depth 0.2 located between 900 and 700 hPa, and a ground albedo of about 0.35 representative for healthy vegetation.
A curve showing typical spectral DOP variations in the Oxygen A band is plotted on fig.1, calculated for S5 at its descending node, on both edges of the swath. The polarization is stronger in the absorption bands where the atmosphere is opaque and the strong unpolarized signal from the ground is not visible. Outside the absorbing bands, the ground contribution dominates and lowers the DOP. The Anti-Sun side of the swath is close to the backscattering direction, where polarization of Rayleigh scattered light is very low while the Sun side corresponds to a scattering angle close to 90 deg which maximises polarization.

In SCIAMACHY and GOME-2, the approach of measuring polarization was taken with respectively the Polarization Measurement Device (PMD) [2, 3] and the Polarization Unit (PU) [4]. Due to cost and mass constraints, in S4 and S5 passive optical components destroying the incoming polarization such as a polarization scrambler were selected. Polarization scramblers, also called scrambling windows or scramblers in short, are the subject of this paper. They have been implemented in several instruments such as MERIS (on board Envisat) [5], OMI (on board Aura) [6]. They are also considered for OLCI (on board Sentinel-3) and Tropomi (Sentinel-5 precursor mission) instruments.

Ideal polarization scrambler must be placed in front of the instrument, so that only depolarized light is collected, and the polarization sensitivity of all instrument subparts virtually plays no role in the measurement. Scramblers are built by assembling wedges of a birefringent crystal, e.g. quartz, in a way that the resulting component is chromatically corrected. Scramblers are traditionally understood as imposing polarization dependent phase delays that vary over the pupil so that the exiting polarization state depends on pupil position (x,y). Then, summing all the contributions averages out the Stokes parameters Q, U and V [7].

Alternatively, scramblers can be described as a set of cascaded polarization beamsplitters. Let us consider a collimated beam (fig. 2) with an arbitrary polarization state, that is incident on some optical instrument. If a single polarization beamsplitter is placed in the beam before the instrument, two polarization states with a variable repartition of energy are obtained. If, in addition, a second polarization beamsplitter is used, having its axis turned by 45 degrees, the instrument is still illuminated by two polarization states but now with a constant repartition of energy. This configuration is the basis of the scrambler design, and makes the instrument insensitive to the incident polarization. This intuitive picture also demonstrates the unavoidable degradation of image quality imposed by the scrambler. With a collimated beam, polarization scramblers create an image with 4 spots arranged in the shape of a parallelogram. On one side, for a better image quality it would be desirable to reduce the size of this parallelogram and have a single spot, but if the 4 spots are recombined then the depolarization power reduces to zero. In practice, depolarization can never be perfect, the image quality is always slightly degraded and a trade-off has to be made between both. Optimizing a scrambler is often a matter of finding the particular design which offers the largest margin for this trade-off.

The paper is arranged as follows. In section II, we describe the formulation of instrument requirements used for Sentinel-4 and 5 to constrain the polarization errors. Then the two most important scrambler designs called “Meris” and “Dual Babinet” are presented and compared. In section III, we discuss important instrumental aspects influencing the optimisation of the polarization performance for S4 and S5: position of the scrambler in the instrument, use of the instrument symmetries, use of a scrambler in a converging beam or at large incidence angles, and finally polarization dependent pointing errors.

II. SPECIFICITIES OF ATMOSPHERIC MISSIONS

A. Constraints on the polarization errors

Assuming that the instrument response to polarization can be described with the Mueller formalism, we can describe briefly the impact of polarization errors. If the observed Earth radiance $R(\lambda)$ has a degree of polarization $DOP(\lambda)$ and a direction of linear polarization θ, the corresponding intensity detected by the instrument is:

$$I(\lambda, \theta) = R(\lambda) \cdot DOP(\lambda) \cdot \cos^2(\theta)$$

TABLE I. INSTRUMENTS USING A POLARIZATION SCRAMBLER.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>OMI</th>
<th>Sentinel-4</th>
<th>Sentinel-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Ozone</td>
<td>Atmosphere</td>
<td>Atmosphere</td>
</tr>
<tr>
<td>Platform</td>
<td>Envisat</td>
<td>Aura</td>
<td>MTG-S</td>
</tr>
<tr>
<td>Overview</td>
<td>Medium resolution pushbroom, 5 cameras in fan shape</td>
<td>High resolution pushbroom</td>
<td>High resolution, E-W scan mirror</td>
</tr>
<tr>
<td>Pupil</td>
<td>Close to rectangular 40*20 mm2</td>
<td>Rectangular 7.6*5.6 mm2</td>
<td>Circular 95 mm diameter</td>
</tr>
<tr>
<td>Field of view</td>
<td>68.5 deg (total) 14 deg (per camera)</td>
<td>115 deg</td>
<td>4.2 deg</td>
</tr>
<tr>
<td>Scrambler</td>
<td>Meris</td>
<td>Dual Babinet</td>
<td>Variant of Dual Babinet</td>
</tr>
<tr>
<td>Scrambler position</td>
<td>Before instrument</td>
<td>Inside telescope</td>
<td>Inside telescope</td>
</tr>
<tr>
<td>Scrambler illumination</td>
<td>Collimated</td>
<td>Weakly converging, chief ray at +/-15 deg</td>
<td>Converging F/2.7, normal chief ray</td>
</tr>
</tbody>
</table>

Figure 2. Working principle of a fully depolarizing scrambler, described with polarization beamsplitters (PBS). The full intensity after two PBS is 1/2 polarized at +45 degrees, and 1/2 polarized at -45 degrees.
\[S(\lambda, \theta) = R(\lambda) M_1(\lambda) \left[1 + \frac{M_{12}(\lambda)}{M_{11}(\lambda)} DOP(\lambda) \cos(2\theta) \right] \]

\[\rho(\lambda, \theta) = \frac{\pi R(\lambda)}{I(\lambda)} \]

The measured reflectance \(\rho(\lambda) \) is found by dividing the radiance measurement \(S(\lambda) \) by the measured radiance \(I(\lambda)M_1(\lambda) \):

\[\rho(\lambda) = \rho_0 \frac{S(\lambda)}{R(\lambda) M_1(\lambda)} \]

The following quantity, called Relative Spectral Radiometric Accuracy (RSRA), giving the peak-to-peak relative error within a specified window width, was then evaluated for \(\rho(\lambda) \):

\[RSRA(\lambda) = \max \left[\frac{\max_{\alpha} \rho(\lambda, \theta) - \min_{\alpha} \rho(\lambda, \theta)}{\rho_0} \right] \]

Requirements for polarization sensitivity are similar for MERIS and the atmospheric missions S4 and S5, but it was soon realised that spectral oscillations in the instrument radiometric error can correlate with the absorption cross section of atmospheric target trace gases (e.g. NO2). A new set of requirements was derived specifically for the atmospheric missions S4 and S5, aiming to constrain the possible spectral oscillations. Assuming that the instrument is measuring a target with a spectrally constant reflectance \(\rho_0 \) with \(I(\lambda) \) being the irradiance:

\[\rho_0 = \frac{\pi R(\lambda)}{I(\lambda)} \]

For each wedge in the MERIS scrambler, assuming that the thickness \(t \) depends on the pupil coordinates \((x,y) \) with \(t(x,y) = t_0 + \Delta t(x,y) \), \(t_0 \) being the thickness at pupil center, the phase difference between an ordinary ray and an extraordinary ray has the following form:

\[\Delta \varphi_{\text{MERIS}}(x,y) = \frac{2\pi}{\lambda} (n_e - n_o) \left[t_0 + \Delta t(x,y) \right] \]
between an ordinary ray and an extraordinary ray in the first pair of wedges becomes:

$$\Delta \varphi_{ea}(x,y) = \frac{2\pi}{\lambda}(n_e - n_o)2\Delta \varphi(x,y).$$

(7)

Due to the much smaller thickness involved in this expression, the fast spectral oscillations seen in the MERIS scrambler now disappear. This is illustrated on fig. 3, where the ratio of observed intensities between crossed and parallel polarizers are shown for both a MERIS and an equivalent Dual Babinet scrambler. For the Dual Babinet, all fast oscillations vanish and we recover the envelope of the curve observed for the MERIS scrambler.

III. S4 AND S5 INSTRUMENTS

A. Scrambler position in the instrument

Many optical components can contribute to the polarization sensitivity of the whole instrument. Typically, the most sensitive components are diffraction gratings, prisms, mirrors used at large incidence such as dichroics, scan or folding mirrors, and finally the telescope mirrors. Refractive elements are less sensitive to polarization as long as they are illuminated close to axis, as a result of their revolution symmetry.

In the MERIS instrument it was possible to place a scrambler in front of the complete instrument, thanks to the small pupil required for a low Earth orbit (LEO) instrument. Sentinel-4, which flies on a GEO orbit, has a pupil of 95mm and a large scan mechanism, which makes it impossible to use a Dual Babinet as the first component. For Sentinel-5, a very small pupil is expected, without a scan mirror. However the required field of view of 108.4 deg makes it difficult to achieve the phase shift compensation described in the previous section even with a Dual Babinet. If all 4 wedges have the same center thickness for nadir observation, this is no longer true at the edge of the swath due to the strongly tilted incident beams. Additionally, specific effects occurring at large incidences, discussed in section III.D, will also create spectral oscillations.

For these reasons, implementing a scrambler inside the instrument seems necessary for S4 and S5. As a consequence, other mitigation methods are required to compensate the polarization sensitivity of the scan mirrors and first optical components placed before the scrambler. A possibility is to use thin tilted plates with one uncoated surface, which then introduce different losses for each polarization component. These compensating plates were first suggested in [9] and are used in the S4 instrument. For designs with folding mirrors, another possibility is to combine them by pairs so that s polarization on one becomes p on the other and vice-versa, in order to achieve a compensation.

B. Use of the instrument’s symmetries

It can be noted that the Dual Babinet scrambler is made of two successive HV depolarizers, the second one being rotated by 45 degrees. HV depolarizers are depolarizing only one linear state, as described in [10]. The following result is actually valid for both the MERIS and the Dual Babinet

This phase shift changes very rapidly with wavelength due to the large thickness divided by \(\lambda \). This is the origin of the fast oscillations.

In the Dual Babinet scrambler, the wedges A and B of the MERIS design are each replaced by two wedges W1+W2 and W3+W4 with crossed axes such that the ordinary ray in W1 (resp. W3) becomes the extraordinary ray in W2 (resp. W4). In addition W1 and W2 (resp. W3 and W4) have opposite wedge angles so that the assemblies W1+W2 and W3+W4 have parallel external sides and there is no need for a chromatic correction (see fig.3). In the Dual Babinet the phase difference
scramblers: the depolarization of incoming linear states at 0 deg (Stokes parameters $(I,Q,U,V)=(1,1,0,0)$) or 45 deg (Stokes parameters $(I,Q,U,V)=(1,0,1,0)$) is achieved by different wedges, respectively $W1+W2$ (or WA) and $W3+W4$ (or WB).

When designing a polarization scrambler for a given instrument, the temptation is high to identify the axis of highest polarization sensitivity of the instrument, then strongly depolarize along this axis, and use a weaker (or even no) depolarization power along the other axis. In general the direction of highest sensitivity is imposed by the spectrometer’s grating, and corresponds to linear states oriented along slits and across slits. Such a solution has been considered for the phase A scrambler design of the S4 instrument (further discussed in next section). However we point out that the approach bears considerable risk. Experience shows that the instrument always has some non negligible sensitivity to the $+45/-45$deg linear states, even if this should not be the case according to its symmetries. Such unexpected dependency has been observed in SCIAMACHY and Gome-2 [11]. Its explanation is not clear, it may be explained e.g. by stress induced birefringence. Based on this observation it was decided to use a fully depolarizing scrambler (Dual Babinet) for the OMI instrument, although the instrument symmetry could indicate that a HV polarizer was sufficient.

C. Scrambler in converging beam

During the phase A of Sentinel-4, a Dual Babinet scrambler was proposed, having the wedge angle of $W3$ and $W4$ set to 0 deg. This scrambler is thus composed of a HV depolarizer, followed by a set of two birefringent plates having their crystal axes at $+/-45$ deg from the axes of the HV depolarizer. If this scrambler would be placed in a collimated beam, it would only depolarize one linear Stokes parameter (Q or U). In the S4 design, it was placed inside the telescope, in the converging beam (F/2.7 or F/3.6 depending on the spectral band). Then the first pair of wedges, aligned with the axis of polarization sensitivity of the grating, is strongly depolarizing, while the second pair is weakly depolarizing.

This weak depolarization generated by the wedges $W3+W4$ is only possible thanks to the converging beam. To understand it, one has to note that the concept of a polarization scrambler based on wedges is introducing a polarization dependent tilt. It is in principle possible to depolarize by introducing any other polarization dependent aberration. In the S4 scrambler, the pair of parallel plates $W3+W4$ is introducing a polarization dependent defocus, plus an astigmatism for the extraordinary ray due to the dependency of the extraordinary index with the propagation direction [10, 12]. Due to these polarization dependent aberrations, we obtain different spots in the focal plane, which are overlapping but still have different shape so that the “recombination” which would cancel the scrambling effect does not take place, or at least not efficiently.

The performance of this Sentinel-4 scrambler with two parallel plates is shown on figure 6. On the left side, we see two curves which correspond to the polarization sensitivities obtained for two incoming linear polarization states, aligned with the axes of strongest or weakest depolarization. The use of other polarization-dependent aberrations than tilt opens the door to new possible designs for polarization scramblers.

![Figure 6. Calculated polarization sensitivity for the scrambler design of Sentinel-4 phase A. The instrument is replaced with a linear polarizer having the worst case orientation. Left: PS curves for polarization states along the axes of strong (black) and weak (gray) depolarization. Right: zoom showing the spectral oscillations in the PS curves.](image-url)

D. Illumination at large angles of incidence

When a polarization scrambler is illuminated at large angles of incidences, new effects appear, which are discussed now. Using the coordinate system defined on fig. 3, we assume an incident beam that travels inside the scrambler wedge $W1$ with an incidence angle ψ, along the direction \mathbf{u}, and arrives at the interface between $W1$ and $W2$. The crystal axes of the wedges $W1$ and $W2$ have the azimuths α_1 and α_2 and are defined by:

$$
\mathbf{u} = \begin{pmatrix} \sin \psi \\ 0 \\ \cos \psi \end{pmatrix}, \quad \text{axis}_1 = \begin{pmatrix} \cos \alpha_1 \\ \sin \alpha_1 \end{pmatrix}, \quad \text{axis}_2 = \begin{pmatrix} \cos \alpha_2 \\ \sin \alpha_2 \end{pmatrix}.
$$

As we will show, due to its non-normal incidence, at the interface the beam sees the crystal axis of $W2$ at a slightly different angle than α_2. The corresponding small rotation has direct consequences on the depolarization power and spectral oscillations generated by the scrambler. Illumination of a scrambler at large angles of incidence is directly relevant for LEO instruments such as Sentinel-5 due to their large fields of view, but also for configurations with a scrambler illuminated by a converging beam (e.g. Sentinel-4); in such case, non-normal angles are found with all possible azimuths.

According to Lekner [13] the directions of the electric fields corresponding to the ordinary and extraordinary beams are, in the limit of a small birefringence n_0–n_e valid for quartz:
where \(N_i \) is a normalisation constant, and similar expressions hold for the electric field directions in W2. The projection of the electric fields in W1 onto the electric fields in W2, which occurs at the interface W1/W2, is described by:

\[
\begin{align*}
\mathbf{e}_{O_1} &= N_i \begin{pmatrix} -\sin \alpha_i \cos \psi \\ \cos \alpha_i \cos \psi \\ \sin \alpha_i \sin \psi \end{pmatrix} \\
\mathbf{e}_{E_1} &= N_i \begin{pmatrix} \cos \alpha_i \cos^2 \psi \\ \sin \alpha_i \\ -\cos \alpha_i \sin \alpha_i \cos \psi \end{pmatrix}
\end{align*}
\]

Design is no longer achieved. The additional beams then create spectral features as in the MERIS scrambler concept. Other effects that occur with illumination at large angles, such as the increase of optical path due to tilted path, or the change of extraordinary index with propagation direction, will only slightly impact the compensation condition and cannot generate fast oscillations. The oscillations cannot be seen on fig 8, where the polarization sensitivity of a Dual Babinet is plotted for various incidence angles. The scrambler has wedges of 1deg, a square spot pattern and crystal axes \(\alpha_1=0\text{deg} \), \(\alpha_2=90\text{deg} \), \(\alpha_3=+45\text{deg} \) and \(\alpha_4=-45\text{deg} \). The pupil is circular with diameter 30mm, all wedges are made of quartz and have 4mm thickness at pupil center. The incident parallel beams have 0 deg (normal) and 20deg incidence, and lie within the \((x,z)\) plane of fig. 3.

\[
\begin{align*}
\mathbf{E}_{O_2} &= \begin{pmatrix} E_{O_1} \\ E_{O_2} \\ E_{E_1} \\ E_{E_2} \end{pmatrix} &= \begin{pmatrix} \mathbf{e}_{O_1} \cdot \mathbf{e}_{O_2} \\ \mathbf{e}_{O_1} \cdot \mathbf{e}_{E_2} \\ \mathbf{e}_{E_1} \cdot \mathbf{e}_{O_2} \\ \mathbf{e}_{E_1} \cdot \mathbf{e}_{E_2} \end{pmatrix} \\
&= \begin{pmatrix} \cos \Delta \alpha - \sin \Delta \alpha \\ \sin \Delta \alpha \end{pmatrix} \begin{pmatrix} E_{O_1} \\ E_{E_1} \end{pmatrix}
\end{align*}
\]

\[
\tan \Delta \alpha = \frac{\sin(\alpha_2 - \alpha_1) \cos \psi}{\sin \alpha \sin \alpha_2 + \cos \alpha \cos \alpha_2 \cos^2 \psi}
\]

\(\neq \tan(\alpha_2 - \alpha_1) \)

where \(E_{O_1}, E_{E_1}, E_{O_2} \) and \(E_{E_2} \) are the electric field complex amplitudes of the beam. We see that the Jones matrix of the interface W1/W2 is a rotation matrix, with an angle slightly different from \(\alpha_2-\alpha_1 \). The deviation between the apparent angle \(\Delta \alpha \) and the true angle \(\alpha_2-\alpha_1 \) is a known effect (see e.g. [14]) but its implications on the performance of polarization scramblers has apparently not been recognized.

In fig. 7 below, we plot \(\Delta \alpha \) as a function of the incidence angle for crystal axes at \(\alpha_2-\alpha_1=45 \text{deg} \) (representative of the W2/W3 interface in a Dual Babinet). The most favourable situation occurs for \(\alpha_1 \approx 22.5 \text{deg} \), where the apparent angle is very close (but not equal) to 45deg in all situations. For other azimuth orientation, the apparent angle \(\Delta \alpha \) deviates from the true angle \(\alpha_2-\alpha_1 \) by up to 15 degrees at large incidence angles \(\psi=45\text{deg} \). For crystal axes at \(\alpha_2-\alpha_1=90 \text{deg} \) (representative of the W1/W2 and W3/W4 interfaces in a Dual Babinet) similar curves can be calculated. In this case the condition \(\alpha_2-\alpha_1 = \Delta \alpha \) is exactly met for \(\alpha_1=0 \text{deg} \) or \(\alpha_1=90 \text{deg} \), as can be proven using equation (11). Nevertheless this circumstance cannot be used for the W1/W2 interface in a Dual Babinet because then the interface W3/W4 is placed at the most unfavourable angle \(\alpha_1 \approx 45 \text{deg} \). Once again, the difference between apparent angle \(\Delta \alpha \) and true angle \(\alpha_2-\alpha_1 \) can be significant at large incidence angles.

This effect has the following consequences for a Dual Babinet: at the interfaces W1/W2 and W3/W4, a deviation from \(\alpha_2-\alpha_1=90 \text{deg} \) means that additional weak beams are generated, for which the compensation of the optical paths specific to this
Additional curves have been calculated for the same scrambler that was rotated by various angles and also show the oscillations. The uncompensated beams also explain the small oscillations observed in the PS curves calculated for the S4 scrambler, on fig. 6.

The angle of 45 deg between crystal axes at the interface W2/W3 is essential and any deviation may strongly decrease depolarization efficiency. As seen from fig. 8, the level of polarization sensitivity strongly depends on the scrambler azimuth position. As expected from fig. 7 the best configuration is achieved for $\alpha_1=22.5$ deg and the worst one for $\alpha_1=-22.5$ deg. In principle it is possible to optimise the azimuthal position of the scrambler to minimise polarization sensitivity. It turns out that the residual polarization in the beam after the scrambler, created by this effect, has a well defined direction that can be conveniently oriented at 45 deg with the polarization axes of the spectrometer grating. In practice, such optimisation is done automatically with a numerical model, replacing the spectrometer with a partial polarizer and searching the best scrambler parameters. The above analysis may help to understand better the performance and compare candidate designs.

E. Polarization dependent pointing

Another effect which deserves attention is the polarization dependent pointing of the scrambler, which creates a co-registration error. When the linear polarization of the incident beam rotates, the pattern observed in a focal plane after the scrambler is slightly moving. For a Dual Babinet, if the input beam is unpolarized, all 4 spots receive equal intensity. If no wander is introduced so that the separation is done axially. This can be modelled by a numerical model, replacing the spectrometer with a partial polarizer and searching the best scrambler parameters. The above analysis may help to understand better the performance and candidate designs.

Let us illuminate a Dual Babinet scrambler with a collimated beam on axis. If a lens with focal length f is placed behind it, the positions of the 4 spots in the focal plane are:

$$
\begin{bmatrix}
 x_{\text{spot}} \\
 y_{\text{spot}}
\end{bmatrix} = \pm f \Delta n \sigma_1 \begin{bmatrix}
 \cos \beta_1 \\
 \sin \beta_1
\end{bmatrix} \pm f \Delta n \sigma_3 \begin{bmatrix}
 \cos \beta_3 \\
 \sin \beta_3
\end{bmatrix}
$$

(12)

where $\Delta n=n_1-n_2$ is the birefringence of the scrambler material, and the other parameters describe the variations of the thickness of wedge Wi with pupil coordinates (x,y):

$$
t_i(x,y) = t_0 + (x \ y) \begin{bmatrix}
 \sigma_1 \\
 \sin \beta_1
\end{bmatrix}
$$

(13)

with σ_1 being the wedge slope and β_1 the wedge azimuth. For the Dual Babinet we have in particular $\sigma_1=\sigma_2$, $\sigma_3=\sigma_4$, $\beta_2=\beta_3+180$ deg and $\beta_4=\beta_5+180$ deg.

The changing distribution of energy between the spots is easily understood by considering the “cascaded polarization beamsplitter” interpretation of the scrambler’s mechanism (see fig.2). It can be calculated analytically. If the crystal axes azimuths of W1/W2/W3/W4 (as defined in section 2.4) are $\alpha_1=0$ deg, $\alpha_2=90$ deg, $\alpha_3=+45$ deg and $\alpha_4=-45$ deg, we get:

$$
\begin{bmatrix}
 x_{\text{barycenter}} \\
 y_{\text{barycenter}}
\end{bmatrix} = f \Delta n \sigma_1 \begin{bmatrix}
 \cos \beta_1 \\
 \sin \beta_1
\end{bmatrix} \cos(2\theta)
$$

$$
+ f \Delta n \sigma_3 \begin{bmatrix}
 \cos \beta_3 \\
 \sin \beta_3
\end{bmatrix} \sin(2\theta)
$$

$$
\left[\cos \left(\frac{4\pi}{\lambda} \Delta n \sigma_1 \left(x \cos \beta_1 + y \sin \beta_1 \right) \right) \right] \text{pupil average}
$$

(14)

where the direction of the input beam linear polarization makes an angle θ with x, and 90deg-0 with y. In this expression, we recognize the position of each of the 4 spots expressed above. The first term proportional to σ_1 is usually dominating, and gives the barycentre move of a perfect scrambler. The second term is smaller and is a correction accounting for the finite depolarization power of the first pair of wedges. As we see from the equation, if the wedge angle σ_1 would tend to zero, the first pair of wedges W1+W2 would not depolarize and the barycentre shift would be imposed by the second pair of wedges W3+W4, in a different direction.

In practice, it is possible to modify the Dual Babinet design to correct for the first order shift (first term). One possibility could be to replace the wedged interface between W1/W2 by a spherical interface. Then, rather than separating two pairs of spots laterally on the focal plane, different defocus aberrations are introduced so that the separation is done axially. This comes at the cost of a lower depolarization efficiency, which unfortunately results in an increase of the second order shift (second term). Other approaches are under investigation for Sentinel-5.

IV. Conclusion

This paper summarizes design rules and performance aspects of polarization scramblers, identified by ESA during the phases A/B1 of the Sentinel-4 and Sentinel-5 missions. Despite their apparent simplicity, polarization scramblers show many complex effects which need to be analysed and considered during the instrument design phases. This paper documents the most important findings in support to future atmospheric missions. The simulations have been done with a scrambler model developed by EADS Sodern. Some of the effects will be investigated experimentally by EADS Sodern in the context of the breadboarding of the phase A scrambler design for Sentinel-4.

Acknowledgment
We thank the teams from Astrium GmbH and Kayser-Threde, industrial primes involved in the preliminary phases of Sentinel-4 and 5 for their availability and the stimulating discussions about polarization scramblers.

REFERENCES

[8] Document provided by EADS Sodern, who performed the characterisation of the MERIS scrambling window assembly (SWA).

[11] See e.g. ref [3] section 5.5 where plots of the sensitivity to +45/-45 deg polarization of SCIAMACHY are shown. In the nadir mode, where the instrument symmetries would suggest no sensitivity, deviation of dzeta from 1.0 by about 20% is observed in the range 400-500nm, and higher values are seen at other wavelengths.

