X-ray inspection systems play a critical role in many non-destructive testing and security applications, with systems typically measuring attenuation during transmission along straight-line paths connecting sources and detectors. Computed tomography (CT) systems can provide higher-quality images than single- or dual-view systems, but the need to measure many projections through the scene increases system complexity and cost. We seek to maximize the image quality of sparse-view (few-view) systems by combining attenuation data with measurements of Compton-scattered photons, that deflect after scattering and arrive at detectors via broken ray paths that provide additional sampling of the scene. The work below presents experimental validation of a singlescatter forward model for Compton-scatter data measured with energy-resolving detectors, and demonstrates a reconstruction algorithm that combines both attenuation and scatter measurements. The results suggest that including Compton-scattered data in the reconstruction process can improve image quality for few-view systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.