Evolutionary research in biology relies on the comparison of different individuals of different species in order to explore
the history of today's biodiversity. Synchrotron radiation based high resolution X-ray tomography (SRμCT) rapidly generates detailed three dimensional datasets. At the beamlines W2 and BW2 of the storage ring DORIS at DESY, Hamburg, Germany, we used SRμCT to study the cranial anatomy of different species and different developmental stages of caecilians (Lissamphibia: Gymnophiona). Here we describe a work-flow for analysis of the SRμCT data that covers segmentation of tissues in Amira® (Mercury Computer Systems), photorealistic rendering and animation in MayaTM, rapid prototyping, and morphometrics. The integration of different analyses of SRμCT data in our study resulted in a comprehensive understanding of form, function, and evolution of caecilian skulls. SRμCT imaging has the potential to become a standard technique for life sciences applications in the near future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.