iSHELL is 1.10-5.3 μm high spectral resolution spectrograph being built for the NASA Infrared Telescope Facility on Maunakea, Hawaii. Dispersion is accomplished with a silicon immersion grating in order to keep the instrument small enough to be mounted at the Cassegrain focus of the telescope. The white pupil spectrograph produces resolving powers of up to R=75,000. Cross-dispersing gratings mounted in a tilt-able mechanism allow observers to select different wavelength ranges and, in combination with a slit wheel and Dekker mechanism, slit lengths ranging from 5ʺ″ to 25ʺ″. One Teledyne 2048x2048 Hawaii 2RG array is used in the spectrograph, and one Raytheon 512x512 Aladdin 2 array is used in a slit viewer for object acquisition and guiding. First light is expected in mid-2016. In this paper we discuss details of the construction, assembly and laboratory testing.
A mid-infrared (MIR) imager and spectrometer is being investigated for possible construction in the early operation of the Thirty Meter Telescope (TMT). Combined with the MIR adaptive optics (AO) system (MIRAO), the instrument will afford ~15 times higher sensitivity and ~4 times better spatial resolution (0.07”) at 10μm compared to 8m-class telescopes. Additionally, through exploiting the large collection area of the TMT, the high-dispersion spectroscopy mode will be unrivaled by other ground- and space-based facilities. These combined capabilities offer the possibility for breakthrough science, as well as ‘workhorse’ observing modes of imaging and low/moderate spectral resolution. In this paper we summarize the primary science drivers that are guiding the instrument design.
iSHELL is 1.15-5.4 μm high spectral resolution spectrograph being built for the NASA Infrared Telescope Facility on
Mauna Kea, Hawaii. Dispersion is accomplished with silicon immersion gratings in order to keep the instrument small
enough to be mounted at the Cassegrain focus of the telescope. The white pupil spectrograph is designed to produce
resolving powers of up to R=70,000. Cross-dispersing gratings mounted in a tilt-able mechanism at the second pupil
allow observers to select different wavelength ranges and, in combination with a slit wheel and dekker mechanism, slit
lengths ranging from 5″ to 25″. One Teledyne 2048x2048 Hawaii 2RG array is used in the spectrograph, and one
Raytheon 512x512 Aladdin 2 array is used in a slit viewer for object acquisition, guiding, and imaging. About $4 million
in funding has been provided by NSF, NASA and the University of Hawaii. First light is expected in about 2015. In this
paper we discuss the science drivers, instrument design and expected performance.
The NASA Infrared Telescope Facility is engaged in a long-term program to improve the image quality of the telescope.
One element of the program is to minimize the static aberrations. The largest static aberration is spherical aberration,
although aberrations caused by zonal polishing rings and support-pad print-through on the primary mirror are also
significant. To correct these static wave front errors, a new secondary mirror is being fabricated with a custom, phase
compensating surface. Since the as-built optical specifications for the IRTF mirrors have been lost, a configurable multimode
instrument was fabricated for use at both the prime and Cassegrain foci to characterize the primary mirror and to
measure the wave front errors at both foci. The instrument modes include a focal plane camera, a knife-edge tester, a
pupil viewer, a Hartmann wave front sensor, a calibrator, and an on-axis guider. Test results from the prime focus show
that the primary mirror has an incorrect conic surface and is poorly supported, which results in a fixed amount of
spherical aberration and variable amounts of astigmatism, coma, and trefoil. Cassegrain focal plane results show that the
original secondary mirror mount system also induces aberrations. Two new secondary mirrors have been made and at
least one of the mirrors will have a custom surface, using ion beam polishing methods, to correct these static aberrations.
An analysis is presently underway to determine the optimum compensating surface to be applied by ion beam polishing.
A mid-infrared (MIR) imager and spectrometer is being investigated for possible consideration for construction
in the early operation of the Thirty Meter Telescope (TMT). Combined with adaptive optics for the MIR, the
instrument will afford 15 times higher sensitivity (0.1mJy as 5 sigma detection in 1hour integration in the N-band
imaging) and 4 times better spatial resolution (0.08") at 10μm compared to 8m-class telescopes. In addition, its
large light-gathering power allows high-dispersion spectroscopy in the MIR that will be unrivaled by any other
facility. We, a collaborating team of Japanese and US MIR astronomers, have carefully considered the science
drivers for the TMT MIR instrument. Such an instrument would offer both broad and potentially transformative
science. Furthering the science cases for the MIRES1, where high-dispersion spectroscopy was emphasized, we
discuss additional capabilities for the instrument drawn from the enlarged science cases. The science cases include
broader areas of astronomical fields: star and planet formation, solar system bodies, evolved stars, interstellar
medium (ISM), extragalaxies, and cosmology. Based on these science drivers, essential instrument capabilities
and key enhancement are discussed (see the companion paper Tokunaga et al. 20102): specifically imaging, lowand
high-spectral resolution modes, integral field spectroscopy, and polarimetry.
A mid-infrared imager and spectrometer is under consideration for construction in the first decade of the Thirty-
Meter Telescope (TMT) operation (see the companion paper by Okamoto). MIRES, a mid-infrared high-spectral
resolution optimized instrument, was previously proposed to provide these capabilities to the TMT community.
We have revised the design in order to provide an improved optical design for the high-spectral resolution
mode with R=120,000, improved imaging with sky chopping, low-spectral resolution mode with an integral
field spectrograph, and polarimetry. In this paper we describe the optical design concepts currently under
consideration.
We present a conceptual design for an innovative infrared cross-dispersed spectrograph for the NASA Infrared
Telescope Facility (IRTF) at Mauna Kea. This facility-class instrument will provide a resolving power of up to 80,000 at
1.2-2.5 μm and 67,000 at 3-5 μm with a minimum slit width of 0.25". The instrument employs a silicon immersion
grating in order to reduce the size of the instrument. The design incorporates a 2048×2048 infrared array for the
spectrograph and an infrared slit viewer. The optical design is optimized for the thermal infrared (2.8-5.5 μm).
We present a discussion of the science drivers and design approach for a high-resolution, mid-infrared spectrograph for
the Thirty-Meter Telescope. The instrument will be integrated with an adaptive optics system optimized for the midinfrared;
as a consequence it is not significantly larger or more complex than similar instruments designed for use on
smaller telescopes. The high spatial and spectral resolution possible with such a design provides a unique scientific
capability. The design provides spectral resolution of up to 120,000 for the 4.5-25 μm region in a cross-dispersed format
that provides continuous spectral coverage of up to 2% to 14 μm. The basic concept is derived from the successful
TEXES mid-infrared spectrograph. To facilitate operation, there are separate imaging channels for the near-infrared and
the mid-infrared; both can be used for acquisition and the mid-infrared imaging mode can be used for science imaging
and for guiding. Because the spectrograph is matched to the diffraction limit of a 30-m telescope, gains in sensitivity are
roughly proportional to the square of the telescope diameter, opening up a volume within the Galaxy a thousand times
greater than existing instruments.
A feasibility design study was undertaken to assess the requirements of a mid-infrared echelle spectrograph (MIRES)
with a resolving power of 120,000 and its associated mid-infrared adaptive optics (MIRAO) system on the Thirty-Meter
Telescope. Our baseline design incorporates a 2K×2K Si:As array or array mosaic for the spectrograph and a 1K×1K
Si:As array for the slit viewer. Various tradeoffs were studied to minimize risk and to optimize the sensitivity of the
instrument. Major challenges are to integrate the spectrograph to the MIRAO system and, later, to an adaptive
secondary, the procurement of a suitable window and large KRS-5 lenses, and the acquisition of large format mid-IR
detector arrays suitable for the range of background conditions. We conclude that the overall risk is relatively low and
there is no technical reason that should prevent this instrument from being ready for use at first light on the Thirty-
Meter Telescope.
We present a preliminary optical design for a mid-infrared, high-resolution spectrograph (MIRES), together with an
integrated adaptive optics system optimized for the mid-infrared, intended for use on a 30-meter telescope. The design
includes laser guide star wavefront sensors, a near-infrared natural guide star wavefront sensor with a patrol field of 60
arcseconds, and near-infrared and mid-infrared imaging channels, in addition to the cross-dispersed spectrograph itself.
The spectrograph provides resolution of up to 120,000 and continuous spectral coverage over multiple cross-dispersed
orders, with high efficiency between 4.5 and 25 microns.
We present a design of a thermal-infrared optimized adaptive optics system for the TMT 30-meter telescope. The
approach makes use of an adaptive secondary but during an initial implementation contains a more conventional
ambient-temperature optical relay and deformable mirror. The conventional optical relay is used without sacrificing the
thermal background by using multiple off-axis laser guide stars to avoid a warm dichroic in the common path. Three
laser guide stars, equally spaced 75" off axis, and a "conventional" 30×30 deformable mirror provide a Strehl > 0.9 at
wavelengths longer than 10 microns and the LGS beams can be passed to the LGS wavefront sensors with pickoff
mirrors while a one-arcminute field is passed unvignetted to the science instrument and NGS WFSs. The overall design
is relatively simple with a wavefront correction similar to existing high-order systems (e.g. 30×30) but still provides
competitive performance over the higher-order TMT NIR AO design at wavelengths as short as 3 microns due to its
reduced thermal emissivity. We present our figures of merit and design considerations within the context of the science
drivers for high-spectral resolution NIR/MIR spectroscopy at 5-28 microns on a 30-meter ground-based telescope.
The Mauna Kea Observatory offers a unique opportunity to build a large and sensitive interferometer. Seven telescopes have diameters larger than 3 meters and are or may be equipped with adaptive optics systems to correct phase perturbations induced by atmospheric turbulence. The maximum telescope separation of 800 meters can provide an angular resolution as good as 0.25 milli-arcseconds in the J band. The large pupils and long baselines make 'OHANA very complementary to existing large optical interferometers. From an astrophysical point of view, it opens the way to imaging of the central part of faint and compact objects such as active galactic nuclei and young stellar objects. On a technical point of view, it opens the way to kilometric or more arrays by propagating light in single-mode fibers. First instruments have been built and tested successfully at CFHT, Keck I and Gemini to inject light into single-mode fibers thus partly completing Phase I of the project. Phase II is now on-going with the prospects of the first combinations of Keck I - Keck II in 2004 and Gemini - CFHT in 2005.
We present the upgraded performance of the Infrared Camera and Spectrograph for the Subaru Telescope (IRCS). The IRCS has been very successfully operating on cassegrain focus of the telescope about four years after the first light in February 2000. Initially the capability of the IRCS was limited due to the quite low sensitivity of the camera side array (Q.E.~50%) and the high dark current
(~0.6e-/sec) of the spectrograph side array. To improve the performance, two major upgrades were carried out for the IRCS in these four years. The first major upgrade was the replacement of the previous engineering grade Aladdin-II array on the camera side used for imaging and grism spectroscopy into the new Aladdin-III array with significantly improved sensitivity (Q.E.~95%) in August 2001. Then, we also replaced the previous Aladdin-II array on the spectrograph side for high dispersion echelle spectroscopy into the new Aladdin-III array with good sensitivity (Q.E.~95%) and low dark current (~0.05e-/s) in the second major upgrade in June 2003. In this report, we will show the updated characteristics for the new Aladdin-III on the spectrograph side and also summarise the total performance of the IRCS after the upgrades together with actually achieved scientific results.
We report on the significantly improved performance of the Infrared
Camera and Spectrograph (IRCS) for the Subaru Telescope. The IRCS
consists of the camera side for imaging and grism spectroscopy and the spectrograph side for echelle spectroscopy. Due to the low sensitivity of the previous Aladdin-II engineering grade InSb infrared array on the camera side, the capability of imaging and grism spectroscopy was reduced. Thus, we replaced the array on the camera side into the new Aladdin-III array in August 2001. The newly installed Aladdin-III array has 1.9 times higher quantum efficiency (95%), 2/3 lower read-out noise (12e- with 16 non-destructive-readout at 27.5K of the array temperature) and better cosmetics than the old Aladdin-II array. We have also obtained grism spectra for a comparison of performances with the old and the new arrays. The spectra with the new array show about twice better signal-to-noise for each spectral element and almost no systematic noise. Currently we have two different types of arrays: Aladdin-II array on the spectrograph side and the science grade Aladdin-III array on the camera side. We will also present dark current, read-out noise, linearity curve and the other characteristics as a function of array temperatures to summarize the current performance of both arrays. We plan to upgrade the Aladdin-II array on the spectrograph side to a new Aladdin-III array in summer 2003.
KEYWORDS: Digital signal processing, Data storage, Electronics, Interfaces, Human-machine interfaces, Control systems, Telecommunications, Infrared radiation, Control systems design, Data processing
The design of the Redstar3 array control system including operational requirements and performance is presented. The architecture is intended to support next generation large format infrared/optical arrays and mosaics by using a new scalable approach that takes advantage of commercially available electronics. Specifically, an approach of using a combination of high speed fiber links, networked PCs and Linux to replace the previous generation of VME based DSPs will be discussed in detail. The design will be used to control HAWAII-2RG (1-4.9μm 2Kx2K HgCdTe), Aladdin II and III (1-5 μm 1Kx1K InSb) arrays in facility class instruments for Gemini, NSO and IRTF. It is also intended to be the platform for high count curvature correction, waveform sense and control for adaptive optics.
A description of a new 1-5 micron filter set for infrared photometry
is presented. This new Mauna Kea Observatories near-infrared filter
set is designed to reduce background noise, improve photometric
transformations from observatory to observatory, provide greater
accuracy in extrapolating to zero airmass, and reduce the color
dependence in the extinction coefficient in photometric reductions.
Through this effort we hope to establish a single standard set of
infrared filters for ground-based astronomy. A complete technical
description is presented to facilitate the production of similar
filters in the future.
Once the proof of concept of the OHANA Array has been demonstrated, the Phase II capabilities can be put into regular science operation, and the OHANA facility can be upgraded to extend interferometric operation to include all of the telescopes of the OHANA Consortium member observatories. This will constitute the Phase III of OHANA. The technical developments required will be relatively straight-forward. Longer fiber sets will be procured (fiber losses are not a limiting factor at the OHANA scale). An enhanced delay line capability will be needed in order to exploit longer baselines with good sky coverage and ample super-synthesis (several compact, multi-pass long optical delay concepts are under investigation). The scheduling and operation modes of an instrument such as OHANA present interesting opportunities and complications. We envision a place for both collaborative consortium science, based on mutual allocation of facility access, and PI-driven access, based on telescope access exchange between consortium members. The most potentially successful mode of operation would imply a community driven model, open to proposals from the different time allocation comittees. This poster looks at possible methods of allocation and operation, inspired by the UKIRT infrared survey (UKIDSS), the European VLBI, and the very interesting possibility of a Mauna Kea telescope time exchange scheme. The issue of data property is of course intimately tied with the proposal/operation system, and means of data availability and distribution are discussed, along with data interpretation tools, which may be modeled on existing systems such as the ISC at Caltech or the JMMC in France. when weighed against the UV coverage, the potential science and the uniqueness of this project, all these issues are worth an in depth study. Discussions are starting as to an OHANA Operation Committee, the goal of which would be to discuss, define and eventually carry out operational modes. The goal, of course, is for the Operation Committee to handle the details of multi-telescope scheduling in a way that will be transparent to the scientist who merely seeks the observational results.
The 'OHANA (Optical Hawaiian Array for Nanoradian Astronomy, means "family" in Hawaiian) aims at making a large and sensitive optical/IR array with the Mauna Kea 3 to 10 meter telescopes. Telescopes will be linked with single-mode fibers to carry the coherence of the beams from the output of the telescopes adaptive optics systems to the beam combination units. The project has been divided into three phases. The first phase is dedicated to the injection of light into single-mode fibers and to the building of the injection module. The third phase is the realization of the complete array and its use by a wide community of astronomers. In the second phase, a prototype 'OHANA will be built and the "shortest" baselines will be explored. The baselines will be located in the South-East and West parts of the observatory. An extra baseline will possibly link the two groups of telescopes if infrastructure comply with it. This phase II 'OHANA will already be the longest and most sensitive optical/IR interferometer built. Scientific targets will span young stellar objects, extragalactic sources and other types of astronomical topics which require both high angular resolution and sensitivity. This paper reviews the main characteristics of the phase II interferometer.
We present a note on low to medium resolution spectroscopy using adaptive optics (AO) system. A special focus is put on the problem of spectral slope variations. In principle a stellar image compensated by AO has a varying point spread function (PSF) strongly dependent on the observing wavelength. Even when the AO is working perfectly, the fraction of the energy in a finite size slit will change with the wavelength. The performance of AO correction is very sensitive to the observing conditions. Spectral slope variations directly connected to the wavelength dependency of the enclosed energy in the slit. Those features common and relatively harmless in conventional spectroscopy such as temporal variation in the seeing, brightness of the targets, imperfect slit peaking, atmospheric differential refraction, and fixed aperture size at spectral extraction, all introduce artificial continuum slopes. The degree of uncertainty in the spectral slope could be serious enough to interfere the observing goals in AO spectroscopy. A case for a spectroscopic observation for low mass stars is presented to demonstrate the problem. We found a steep continuum slope that is unrealistic for a low mass star. We undertook laboratory experiments with a calibration source in the AO system to test if the unrealistic continuum slope could be accounted for by the varying AO performance. In the experiments the "bluing" of the continuum slopes have been confirmed when the light source is dropping off of the slit or the wavefront reference source is faint. The effects are also qualitatively reproduced with calculations done by an AO simulation code.
We report current status of the IR Camera and Spectrograph (IRCS) for the Subaru Telescope. IRCS is a Subaru facility instrument optimized for high-resolution images with adaptive optics (AO) and tip-tilt at 1-5 micrometers . IRCS consists of two parts: one is a cross-dispersed spectrograph providing mid to high spectral resolution, the other is a near-IR camera with two pixel scales, which also serves as an IR slit-viewer for the echelle spectrograph. The camera also has grisms for low to medium resolution spectroscopy. We have just completed the first engineering run about one month before this SPIE conference. It was an initial performance evaluation without AO or tip-tilt to check IRCS and its interface to the telescope. We confirmed the basic imaging and spectroscopic capability we had estimated.
All existing night-time astronomical telescopes, regardless of aperture, are blind to an important part of the universe - the region around bright objects. Technology now exist to build an unobscured 6.5 m aperture telescope which will attain coronagraphic sensitivity heretofore unachieved. A working group hosted by the University of Hawaii Institute for Astronomy has developed plans for a New Planetary Telescope which will permit astronomical observations which have never before ben possible. In its narrow-field mode the off-axis optical design, combined with adaptive optics, provides superb coronagraphic capabilities, and a very low thermal IR background. These make it ideal for studies of extra-solar planets and circumstellar discs, as well as for general IR astronomy. In its wide-field mode the NPT provides a 2 degree diameter field for surveys of Kuiper Belt Objects and Near-Earth Objects, surveys central to current intellectual interests in solar system astronomy.
A 1-5 micrometers IR camera and spectrograph (IRCS) is described. The IRCS will be a facility instrument for the 8.2 m Subaru Telescope at Mauna Kea. It consists of two sections, a spectrograph and a camera section. The spectrograph is a cross-dispersed echelle that will provide a resolving power of 20,000 with a slit width of 0.15 arcsec and two-pixel sampling. The camera section serves as a slit viewer and as a camera with two pixel scales, 0.022 arcsec/pixel and 0.060 arcsec/pixel. Grisms providing 400-1400 resolving power will be available. Each section will utilize an ALADDIN II 1024 X 1024 InSb array. The instrument specifications are optimized for 2.2 micrometers using the adaptive optics and the tip-tilt secondary systems of the Subaru Telescope.
The IR camera and spectrograph (IRCS) a facility instrument for the 8.2m Subaru Telescope is being built at the University of Hawaii, Institute for Astronomy. IRCS will use a 1024 X 1024 InSb array for spectroscopy and another 1024 X 1024 InSb array for IR imaging. In a collaborative effort with the team members of SpX2, a test system has been fabricated for joint testing of 1024 X 1024 InSb ALADDIN II based arrays. This document is a preliminary report on the test results of the science grade array provided by the Subaru Telescope Project. It is a possible candidate for inclusion in IRCS.
The IR camera and spectrograph (IRCS) for SUBARU and Gemini near-IR imager (NIRI) instruments have a common design for all wheels, based on a modified geneva mechanisms with a locking cam actuated detent pin. The geneva design, in combination with the spring loaded detent mechanism, allows the stepper motor/spur gear drive to decouple from the wheel at each aperture position. The detent mechanism positions the wheel precisely. The need for precise motor control and wheel position encoding is reduced because of the detent mechanism. Six of these mechanism are filters wheels requiring repeatable aperture positing. The other seven mechanisms include of a slit wheel, grism wheel, pupil mask wheel, 2 beam steerers, a focal p;lane mask wheel, and a beamsplitter wheel. These mechanisms require repeatable, stable and accurate positioning. The number of aperture positions for the 13 wheels range from 2 to 16. The mechanisms are aligned and tested at room temperature and operated at 60 K, requiring an athermal design, for which the modified geneva mechanism is ideally suited. This paper will discuss the prototype development and final mechanical design of specific wheel mechanisms completed for the IRCS and NIRI instruments at the Institute for Astronomy.
The IR Camera and Spectrograph for the Subaru telescope uses a series of reflective and transmissive slits. The width of the slits ranges from 48 micrometers to 440 micrometers . The requirements for both types of slits include sharp edge definition, good surface figure at cryogenic temperature and high reflectivity. Several different substrate materials and fabrication methods were investigated. The substrate materials considered include aluminum, copper, tungsten carbide, chromium carbide, and sapphire. The fabrication methods investigated include photo-etching micro machining using UV laser, electroforming, diamond turning, conventional polishing and electrical-discharge-machining. The pros and cons of each material and fabrication method will be described.
The infrared instrumentation plan for the Subaru telescope is described. Four approved infrared instruments and one test observation system are now in the construction phase. They are coronagraph imager using adaptive optics (CIAO), cooled mid- infrared camera and spectrograph (COMICS), infrared camera and spectrograph (IRCS), OH-airglow suppressor spectrograph (OHS) and mid-infrared test observation system (MIRTOS). Their performance goals and construction schedules are summarized. The plan for procurement and evaluation of infrared arrays required by these instruments is briefly described.
A specially designed faint object spectrograph in the near-IR region from 1 to 2 micrometers is proposed for the Japanese National Large Telescope: SUBARU. The proposed instrument called OHS for SUBARU is kind of a pre-optics system capable of eliminating most of intense OH airglow emission lines from the incident beam in the J- and H-passbands. The detectivity for objects in the faintest end is supposedly enhanced with this spectroscopic filter system by removing nearly 95% of the natural sky background: the non-thermal night airglow emission. The sensitivity gain in terms of limiting magnitude in these wavelength bands is expected to be 1 to 1.5 mag, depending on the modes of observations. The expected performance of the prototype OHS when attached to SUBARU will also be presented.
The optical design of a general-purpose 1 to 5 micrometers cryogenic IR camera and spectrograph (IRCS) for the 8.2-m Subaru telescope is described. The camera section serves the essential purpose of a slit-viewer in order to permit efficient use of the spectrograph on faint objects. It will also serve as a multipurpose IR camera. The spectrograph section will have a resolving power of (lambda) /(Delta) (lambda) equals 660 to 1600. 1 to 2.5 micrometers or 3 to 5 micrometers will be observed in a single exposure by using gratings and cross-dispersing prism combinations. The slit length will be 3 to 5'. The camera section will have 3 pixel scales (0'.030, 0'.056, and 0'.125) that provide high spatial imaging, 1:1 imaging (high throughput), and `wide-field' (about 2' X 2'). The spectrograph section will have 2 pixel scales: 0'.05/pixel and 0'.125/pixel. The important features of the IRCS are: (1) Two pixel scales are available, one matched to the tip-tilt secondary and the other matched to the adaptive optics system. (2) Switching between imaging and spectroscopic modes is possible. Therefore observational programs can be optimized for the seeing, availability of guide stars, and weather conditions. (3) In some cases deep imaging can be undertaken while long exposures are made in the spectroscopic mode.
A 1 - 5.4 micrometers Cryogenic Echelle Spectrograph (CSHELL) for the NASA Infrared Telescope Facility is described. It achieves a resolving power of 5,000 to 40,000 using slits ranging from 4.0' to 0.5' in width and 30' long. It operates in a single-order long-slit mode, and a circular variable filter is used as an order sorter. Two infrared arrays are employed to achieve spectral coverage from 1 - 5.4 micrometers : a 256 X 256 HgCdTe NICMOS-3 array for 1 - 2.5 micrometers and a SBRC 58 X 62 InSb array for 2.8 - 5.4 micrometers . A closed- cycle cooler is employed to keep the optics and supporting structure at 73 K and to maintain the detectors at their proper operating temperatures. The entire spectrograph fits within an envelope of 64 cm X 35 cm X 27 cm. The instrument is controlled by a microcomputer mounted on the telescope, but the observer commands the instrument from a UNIX X Windows workstation on the Internet. This use of the Internet for communication between instrument control and user interface computers facilitates remote observing. A limiting magnitude of 12.3 mag is achieved for S/N equals 10 in 1 hour integration time, at resolving power of 20,000 at 2.2 micrometers wavelength.
The design of an OH airglow suppressor spectrograph for use on the University of Hawaii 2.2 m telescope is presented. The unique feature of the pre-optics system for low resolution spectroscopy in the 1.1 to 1.8 micrometers range is the capability of removing most of the intense OH emission lines by a specially designed spectroscopic mask. With the OH suppressor spectrography, the background flux is reduced to about 1/30 the natural background on the average. The sensitivity gain in terms of limiting magnitude is expected to be approximately 1.5 mag, compared with the conventional method.
This paper describes a low cost adaptive optics (AO) instrument that is being built for the f/31 focus of the UH 2.2m telescope. While operating within the low cost constraint, we have tried to maximize the flexibility and usefulness of the instrument, and minimize the impact of the necessary performance compromises. We have used off-the-shelf optical and electronic components wherever possible, and have emphasized simplicity of design throughout the instrument. The UH prototype AO system, on which the 2.2m AO system is based, is described elsewhere, thus the principles of operation of the UH 2.2m instrument will not be described in detail here.
The design of an infrared cryogenic echelle spectrograph for use on the NASA Infrared Telescope Facility is described. The resolving power achieved over the range 1-5.4 microns is 1-40,000 with slit widths of 2.0-0.5 arcsec. The spectrograph is used in a single order with a 30-arcsec-long slit. No cross dispersion is provided because of the small number of orders that can be observed at once and the need to keep the instrument as small as possible. A closed-cycle cooler is used in lieu of cryogens in order to achieve greater reliability and ease of use at the telescope. The optical layout, the design philosophy, the modes of operation, and the construction details are provided.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.