In this paper we will report on the most recent immersion scanner innovations to improve scanner matching overlay. These are realized by improvements in e.g. optical column distortion, wafer alignment and system-metrology. We will elaborate on scanner solutions for wafer handling/chucking of warped wafers. Furthermore, to enable cost-of-ownership reduction, system design implementations driving larger scanner productivity (wafer per hour) will be presented.
The foundations of leading edge DRAM manufacturing are built on accurate EUV lithography exposures in close synergy with cutting-edge immersion layers as well as advanced patterning schemes (e.g. self-aligned multiple patterning). Final device yield critically depends on the subsequent and accurate stacking of multiple layers with device features of precise width and edge placement. To support the ever-decreasing requirements for both the EUV as well as the DUV, (edge) placement accuracy, scanner enhancements are required on both platforms. In this paper we report on the improvements of the NXT:2100i immersion scanner to further reduce the (edge) placement errors within the die (intra-field) and across the full wafer (inter-field). The NXT:2100i incorporates a new projection optics with built-in distortion manipulator that extends the intra-field correction capability for both X and Y directions. The external overlay interface is extended with the distortion manipulator degrees of freedom to handle high spatial frequent distortion data of a to-be-matched scanner or high spatial frequent overlay fingerprints measured by after develop or after etch metrology. Thermal conditioning of the reticle is improved with a fast conditioned internal reticle library resulting in lower reticle-to-reticle temperature variation. Improved lens metrology (aberrations) and reticle align accuracy (alignment/overlay) is achieved with a better integrated image sensor. Improved alignment accuracy and reduced alignment process dependencies for wafer alignment are realized with 12-colors parallel measurements and by adding more alignment marks measurements at the wafer measure side without throughput impact. In concert with the hardware components, various software algorithms are updated, yielding improved inter- and intra-field overlay setup and improved reticle heating induced overlay. We will detail the specific module performance items as well as the system performance of the NXT:2100i scanner, both in reference (DRAM relevant overlay) to DUV as well as to EUV scanners.
While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore’s law throughout the next decade.
A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore’s law economical requirements, as well as the tight focus and overlay control needed for future process nodes.
The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts.
Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution.
This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.
We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.
NXE:3300B scanners have been operational at customer sites since almost two years, and the NXE:3350B, the 4th generation EUV system, has started shipping at the end of 2015. All these exposure tools operate using MOPA pre-pulse source technology, which enabled significant productivity scaling, demonstrated at customers and at ASML. Having achieved the required throughput to support device development, the main priority of the ASML EUV program has shifted towards improving stability and availability. Continuous progresses in defectivity reduction and in the realization of a reticle pellicle are taking place at increased speed. Today’s overlay and imaging results are in line with the requirements of 7nm logic devices; Matched Machine overlay to ArF immersion below 2.5 nm and full wafer CDU performance of less than 1.0nm are regularly achieved. The realization of an intensity loss-less illuminator and improvements in resist formulation are significant progress towards enabling the use of EUV technology for 5nm logic devices at full productivity. This paper will present an overview of the status of the ASML EUV program and product roadmap by reviewing the current performance and on-going developments in productivity, imaging, overlay and mask defectivity reduction.
This paper describes the development and evolution of the critical architecture for a laser-produced-plasma (LPP) extreme-ultraviolet (EUV) source for advanced lithography applications in high volume manufacturing (HVM). In this paper we discuss the most recent results from high power sources in the field and testing on our laboratory based development systems, and describe the requirements and technical challenges related to successful implementation of those technologies on production sources. System performance is shown, focusing on pre-pulse operation with high conversion efficiency (CE) and with dose control to ensure high die yield. Finally, experimental results evaluating technologies for generating stable EUV power output for a high volume manufacturing (HVM) LPP source will be reviewed.
Multiple NXE:3300 are operational at customer sites. These systems, equipped with a Numerical Aperture (NA) of 0.33, are being used by semiconductor manufacturers to support device development. Full Wafer Critical Dimension Uniformity (CDU) of 1.0 nm for 16nm dense lines and 1.1 nm for 20nm isolated space and stable matched overlay performance with ArF immersion scanner of less than 4nm provide the required lithographic performance for these device development activities. Steady progresses in source power have been achieved in the last 12 months, with 100Watts (W) EUV power capability demonstrated on multiple machines. Power levels up to 90W have been achieved on a customer machine, while 110W capability has been demonstrated in the ASML factory. Most NXE:3300 installed at customers have demonstrated the capability to expose 500 wafers per day, and one field system upgraded to the 80W configuration has proven capable of exposing 1,000 wafers per day. Scanner defectivity keeps being reduced by a 10x factor each year, while the first exposures obtained with full size EUV pellicles show no appreciable difference in CDU when compared to exposures done without pellicle. The 4th generation EUV system, the NXE: 3350, is being qualified in the ASML factory.
The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML’s third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of <1.5nm for 22nm dense and iso lines at a dose of ~16mJ/cm2 has been achieved. Matched machine overlay (NXE to immersion) of around 3.5nm has been demonstrated on multiple systems. Dense lines have been exposed down to 13nm half pitch, and contact holes down to 17nm half pitch. 10nm node Metal-1 layers have been exposed with a DOF of 120nm, and using single spacer assisted double patterning flow a resolution of 9nm has been achieved.
Source power is the major challenge to overcome in order to achieve cost-effectiveness in EUV and enable introduction into High Volume Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment.
Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed.
In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.
This paper describes the development of a laser-produced-plasma (LPP) extreme-ultraviolet
(EUV) source for advanced lithography applications in high volume manufacturing. EUV
lithography is expected to succeed 193nm immersion double patterning technology for sub-
20nm critical layer patterning. In this paper we discuss the most recent results from high
power testing on our development systems targeted at the 250W configuration, and describe
the requirements and technical challenges related to successful implementation of these
technologies. Subsystem performance will be shown including Conversion Efficiency (CE),
dose control, collector protection and out-of-band (OOB) radiation measurements. This
presentation reviews the experimental results obtained on systems with a focus on the topics
most critical for a 250W HVM LPP source.
Laser produced plasma (LPP) light sources have been developed as the primary approach for EUV scanner imaging of circuit features in sub-20nm devices in high volume manufacturing (HVM). This paper provides a review of development progress and readiness status for the LPP extreme-ultra-violet (EUV) source. We present the latest performance results from second generation sources, including Prepulse operation for high power, collector protection for long lifetime and low cost of ownership, and dose stability for high yield. Increased EUV power is provided by a more powerful drive laser and the use of Prepulse operation for higher conversion efficiciency. Advanced automation and controls have been developed to provide the power and energy stability performance required during production fab operation. We will also discuss lifetesting of the collector in Prepulse mode and show the ability of the debris mitigation systems to keep the collector multi-layer coating free from damage and maintain high reflectivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.