We have investigated scintillator efficiency for MeV radiographic imaging. This paper discusses the modeled detection efficiency and measured brightness of a number of scintillator materials. An optical imaging camera records images of scintillator emission excited by a pulsed x-ray machine. The efficiency of various thicknesses of monolithic LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) are being studied to understand brightness and resolution trade-offs compared with a range of micro-columnar CsI:Tl (thallium-doped cesium iodide) scintillator screens. The micro-columnar scintillator structure apparently provides an optical gain mechanism that results in brighter signals from thinner samples. The trade-offs for brightness versus resolution in monolithic scintillators is straightforward. For higher-energy x-rays, thicker materials generally produce brighter signal due to x-ray absorption and the optical emission properties of the material. However, as scintillator thickness is increased, detector blur begins to dominate imaging system resolution due to the volume image generated in the scintillator thickness and the depth of field of the imaging system. We employ a telecentric optical relay lens to image the scintillator onto a recording CCD camera. The telecentric lens helps provide sharp focus through thicker-volume emitting scintillators. Stray light from scintillator emission can also affect the image scene contrast. We have applied an optical light scatter model to the imaging system to minimize scatter sources and maximize scene contrasts.
Ultrafast scintillators are the subject of current research in an effort to better resolve ultrafast phenomena in high-energy density physics (HEDP) experiments. Despite extensive research on new scintillator materials, the essential mechanism of energy absorption, excitation, and photo-emission has remained unchanged for over 50 years. Recently, a new class of semiconductor detector has been developed utilizing the radoptic effect, or the change of refractive index when subjected to radiation, in an attempt to record events faster than conventional scintillators.1 This study was designed for the observation of the radoptic effect by optical interferometry in different semiconductors to experimentally determine the fastest and most sensitive materials for the optimization of current radsensors.
The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.
Cygnus is a high-energy radiographic x-ray source. Three large zoom lenses have been assembled to collect images from
large scintillators. A large elliptical pellicle (394 × 280 mm) deflects the scintillator light out of the x-ray path into an
eleven-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the
scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To
maximize the resolution of objects of different sizes, the scintillator and zoom lens are translated along the x-ray axis,
and the zoom lens magnification changes. Zoom magnification is also changed when different-sized recording cameras
are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The
scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one doublet
and allowing all other lenses to be repositioned, the zoom lens can also use a CsI(Tl) scintillator that produces green
light centered at 540 nm (for future operations). All lenses have an anti-reflective coating for both wavelength bands.
Two sets of doublets, the stop, the scintillator, and the CCD camera move during zoom operations. One doublet has x-y
compensation. Alignment of the optical elements was accomplished using counter propagating laser beams and
monitoring the retro-reflections and steering collections of laser spots. Each zoom lens uses 60 lb of glass inside the 425
lb mechanical structure, and can be used in either vertical or horizontal orientation.
Cygnus is a high-energy radiographic x-ray source. The rod-pinch x-ray diode produces a point source measuring 1 mm
diameter. The target object is placed 1.5 m from the x-ray source, with a large LYSO scintillator at 2.4 m. Differentsized
objects are imploded within a containment vessel. A large pellicle deflects the scintillator light out of the x-ray
path into an 11-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to
the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To
maximize the resolution of test objects of different sizes, the scintillator and zoom lens can be translated along the x-ray
axis. Zoom lens magnifications are changed when different-sized scintillators and recording cameras are used (50 or
62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue
light peaking at 435 nm, so special lens materials are required. By swapping out one lens element and allowing all lenses
to move, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 550 nm. All lenses are
coated with anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, and the CCD camera move
during zoom operations. One doublet has XY compensation. The first three lenses use fused silica for radiation damage
control. The 60 lb of glass inside the 340 lb mechanical structure is oriented vertically.
We discuss recent advances in the development of high repetition rate table-soft soft x-ray lasers resulting from
research conducted at Colorado State University. Advancing saturated table-top lasers to shorter wavelengths we report
the operation of gain-saturated sub-10 nm table-top lasers at 1 Hz repetition rate. We also present experimental results
that show that injection-seeding of solid-target soft x-ray plasma amplifiers reduces the far field divergence by an order
of magnitude and to allow for control of the far-field beam characteristics by tailoring the divergence of the seed. We
finally discuss progress towards the development of high repetition rate compact all-diode-pumped soft x-ray lasers. We
have operated the front end of the diode-pumped soft-ray laser driver at 100Hz repetition rate, obtaining sub-5 ps optical
laser pulses of 100 mJ energy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.