The rapid increase on the information sharing around the world, leads to an utmost requirement for capacity and bandwidth. However, the need for security in the transmission and storage of information is also of major importance. The use of quantum technologies provides a practical solution for secure communications systems. Quantum key distribution (QKD) was the first practical application of quantum mechanics, and nowadays it is the most developed one. In order to share secret keys between two parties can be used several methods of encoding. Due to its simplicity, the encoding into polarization is one of the most used. However, when we use optical fibers as transmission channels, the polarization suffers random rotations that may change the state of polarization (SOP) of the light initially sent to the fiber to a new one at the output. Thus, in order to enable real-time communication using this encoding method it is required the use of a dynamic control system. We describe a scheme of transmission of quantum information, which is based in the polarization encoding, and that allows to share secret keys through optical fibers without interruption. The dynamic polarization control system used in such scheme is described, both theoretically and experimentally. Their advantages and limitations for the use in quantum communications are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.