Neuromorphic computing hardware that requires conventional training procedures based on backpropagation is difficult to scale, because of the need for full observability of network states and for programmability of network parameters. Therefore, the search for hardware-friendly and biologically-plausible learning schemes, and suitable platforms, is pivotal for the future developments of the field. We present a novel experimental study of a photonic integrated neural network featuring rich recurrent nonlinear dynamics and both short- and long-term plasticity. Scalability in these architectures is greatly enhanced by the capability to process input and to generate output that are encoded concurrently in the temporal, spatial and wavelength domains. Moreover, we discuss a novel biologically-plausible, backpropagation-free and hardware-friendly learning procedure based on our neuromorphic hardware.
We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. First, we dicuss how passive reservoir computing can be used to perform non-linear signal equalisation in telecom links. Then, we introduce a training method that can deal with limited weight resolution for a hardware implementation of a photonic readout.
The development of label-free, high-speed, automated and integrated cell sorting solutions is of particular interest for several biomedical applications. The employment of digital holographic microscopy in microfluidic flow cytometry gives access to a large amount of information regarding the 3D refractive index structure of a cell. In the presented work a passive, linear, integrated photonic stage is proposed as an effective nonlinear mixing interface between the hologram projection and the image sensor, allowing for a fast, compact and power-efficient extreme learning machine (ELM) implementation. The required nonlinearity comes from the sinusoid-based transfer function between the phase-shift accumulated by the light through the cell and the field intensity measured by the detector. 2D FDTD simulations with 2 classes of randomized cell models (normal and cancer cells differing in their average nucleus size) have been employed to train and test a readout linear classifier. A collection of silicon nitride pillar scatterers embedded in a silica cladding are interposed between the cell and the intensity monitor, in order to increase the complexity of the acquired interference pattern and to assist the readout linear classifier. The results show that, employing green light, the presence of scatterer layers decreases the classification error rate up to ~ 50% with respect to the case without scatterers. Such improvement can be further increased to a factor ~ 5 when a properly designed integrated optical cavity containing the cell is considered. An intuitive argumentation that explains these results is provided.
We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.