The protein contribution to the red blood cell (RBC) aggregation is studied using the in-house made two-channeled optical tweezers. The cells interaction was characterized using two forces: the force required for separating two cells (FD – disaggregating force) and the force required for holding them from their spontaneous aggregation (FA – aggregating force). The gamma globulin solutions with/without albumin were used to induce the RBC aggregation. The strong interaction (3-10 pN) between the cells was measured within the contact formed using optical tweezers. We found that FD becomes stronger as the gamma globulin concentration increases, while the addition of albumin to the solution led to the significant (few fold) enhancement of the cells interaction forces. However, despite of the strong interaction between the cells their spontaneous overlapping was not observed, unlike the case in plasma, where the cells did increase their overlapping surface, when attached with small interacting surface and released from optical traps. This work in addition to our previous work with model solutions of fibrinogen allows us to conclude that the synergy of blood components is one of the most important features that contribute to the reversible RBC aggregation.
Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 ± 6.1 μm/s and 110 ± 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)
Heterodyne spectroscopy of molecular rotational lines and atomic fine-structure lines is a powerful tool in astronomy and
planetary research. One example is the OI fine structure line at 4.7 THz. This is a main target for the observation with
GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be operated on board of SOFIA. We
report on the development of a compact, easy-to-use source, which combines a quantum-cascade laser (QCL) with a compact,
low-input-power Stirling cooler. This work is part of the local-oscillator development for GREAT/SOFIA. The QCL, which is
based on a two-miniband design, has been developed for high output power and low electrical pump power. Efficient carrier
injection is achieved by resonant longitudinal optical phonon scattering. The amount of generated heat complies with the
cooling capacity of the Stirling cooler. The whole system weighs less than 15 kg including cooler, power supplies etc. The
output power is above 1 mW. With an appropriate optical beam shaping, the emission profile of the laser becomes a
fundamental Gaussian one. Sub-MHz frequency accuracy can be achieved by locking the emission of the QCL to a molecular
resonance.
The terahertz (THz) portion of the electromagnetic spectrum provides specific spectroscopic information for substance
identification. It has been shown that the spectral features of explosive materials might be used for detection and
identification at stand-off distances. We report on the development of a THz spectrometer for explosive detection and
identification. The system is based on THz quantum cascade lasers working at different frequencies. These are used for
illumination of the object under test. The reflected and backscattered radiation from the object under test is detected with
a sensitive heterodyne receiver. As a first step a single frequency, liquid-cryogen free heterodyne receiver operating at
2.5 THz has been developed. In order to realize maximum sensitivity a phonon-cooled NbN hot electron bolometric
mixer with a quantum cascade laser as local oscillator were chosen. The concept of the system and first results will be
presented.
We demonstrated successful operation of an NbN single photon detector in the temperature range from 6 K to 1.2 K
using a 3He sorption refrigerator combined with a pulse-tube mechanical cooler. The detector was read out either by
microwave amplifiers or by a broadband SQUID-amplifier that limited the maximum counting rate to 107 counts per
second. This counting rate was only one third of the maximum rate provided by the detector. Besides an increase in the
quantum efficiency in the visible and near-infrared spectral range with the decrease of the operation temperature, we
found a more than twofold improvement in the energy resolution as compared to earlier demonstrated 1 eV at 6.5 K. The
noise equivalent power estimated at 4.2 K for visible light was better than 10-18 W Hz-1/2. We verified that the lowest
achieved dark count rate was still caused by the harsh electrical conditions in the mechanical cooler.
Detection of concealed threats is a key issue in public security. In short range applications, passive imagers operating at
millimeter wavelengths fulfill this task. However, for larger distances, they will suffer from limited spatial resolution.
We will describe the design and performance of 0.8-THz imaging radar that is capable to detect concealed objects at a
distance of more than 20 meter. The radar highlights the target with the built-in cw transmitter and analyses the returned
signal making use of a heterodyne receiver with a single superconducting hot-electron bolometric mixer. With an
integration time of 0.3 sec, the receiver distinguishes a temperature difference of 2 K at the 20 m distance. Both the
transmitter and the receiver use the same modified Gregorian telescope consisting from two offset elliptic mirrors. The
primary mirror defines limits the lateral resolution of the radar to 2 cm at 20 m distance. At this distance, the field of
view of the radar has the diameter 0.5 m. It is sampled with a high-speed conical scanner that allows for a frame time
less than 5 sec. The transmitter delivers to the target power with a density less than ten microwatt per squared centimeter,
which is harmless for human beings. The radar implements a sensor fusion technique that greatly improves the ability to
identify concealed objects.
Suicide bombers and hidden bombs or explosives have become serious threats especially for mass transportation. Until now there exists no established system which can be used against these threats. Therefore new technologies especially for stand-off detection of threats are required. Terahertz (THz) rays offer an alternative inspection method, which can cope with these new challenges. Major advantages of THz radiation as compared to other spectral regions are the possibility to penetrate through clothes and that THz radiation is not harmful for human health. In this report the design and results of a THz stand-off detection system will be presented. The sensor is based on active illumination of the object and sensitive heterodyne detection of reflected and backscattered radiation. The system operates at about 0.8 THz. A THz laser is used for illumination and a superconducting hot-electron bolometric mixer for detection. The local oscillator required for heterodyne detection is a multiplied microwave source. The optical system is designed to allow for stand-off detection at 20 m with a spatial resolution less than 2 cm.
Quantum cascade lasers (QCLs) operating at 2.5 THz have been used for gas phase spectroscopy and as local oscillator
in a heterodyne receiver. One QCL has a Fabry-Perot resonator while the other has a distributed feedback resonator. The
linewidth and frequency tunability of both QCLs have been investigated by either mixing two modes of the QCL or by
mixing the emission from the QCL with the emission from a 2.5 THz gas laser. The frequency tunability as well as the
linewidth is sufficient for Doppler limited spectroscopy of methanol gas. The QCLs have been used successfully as local
oscillators in a heterodyne receiver. Noise temperature measurements with a hot electron bolometer and a QCL yielded
the same result as with a gas laser as local oscillator.
A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4/SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4/SiO2 membranes was found to be 0.7÷0.9 GHz, which is much smaller than for similar devices on silicon. Application of buffer layers and use of alternative types of membranes (e.g. silicon-on-insulator) is under investigation.
Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
We report on the energy resolution of a recently developed superconductor single-photon quantum detector. In a
superconducting strip quasiparticles created by a single absorbed photon and a bias current jointly cause a normal domain and, subsequently, a voltage transient that manifests absorption of the photon. Given a constant optical coupling, the mechanism suggests a moderate to good energy resolution in the wavelength range from near-infrared to X-rays. We implemented a meander line from a 80-nm wide and 5-nm thick NbN strip to detect single near-infrared photons with the repetition rate 5•107 sec-1 and quantum efficiency of few per cent. Although with this detector operated at 2 K we have indeed observed photon-energy dependent detector response, the energy resolving capability appeared
smaller than the detector model predicted. We suggest that the inconsistency owes to the influence of the bias current.
We analyze the spectral performance of recently developed single-photon quantum detector that consists of a narrow, nanometer sized meander-line made from ultra-thin superconducting film. The detector exploits a combined detection mechanism, in which avalanche multiplication of quasiparticles after absorption of a single photon and the bias current jointly produce a normal domain that results in a voltage pulse developing between the meander ends. With either the wavelength increase or the bias current decrease, the single-photon detection regime exhibits a cut-off. The wavelength, at which the cut-off occurs, varies from infrared waves to visible light depending on the superconducting material and operation conditions. Structural and geometrical non-uniformities of the meander line smooth out the otherwise expected sharp drop of the detection efficiency beyond the cut-off. We refine the early detector model and propose a tentative explanation of how superconducting fluctuations may additionally extend the detection efficiency beyond the cut-off wavelength.
We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth's atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration (~24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA).
We extend the concept of the superconducting quantum counter in order to develop a new quantum detector for submillimeter astronomy. The detector exploits a cumulative detection mechanism, in which the response appears due to successive formation of the normal spot and a resistive domain in a narrow strip carrying sub-critical supercurrent. The intrinsic recovery time of the counter is partly determined by diffusion of nonequilibrium electrons and, thus, depends on the energy of detected photons. Depending on the superconducting material used and operation conditions, such detector may have cut-off wavelengths for the single-photon regime ranging from terahertz waves to visible light and simultaneously provide a moderate energy resolution. We simulated performance of the background-limited submillimeter direct detector from Ti having the 100-micrometer cut-off wavelength, low dark count rate and intrinsic 10-21 W Hz-1/2 noise equivalent power for 4-K background radiation. We present first results obtained with a detector prototype fabricated from ultra-thin Nb film.
Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.