Two-photon (2-γ) photodynamic therapy (PDT) as opposed to "standard" one-photon (1-γ) PDT with Visudyne has recently been suggested as a targeted treatment alternative for wet-form age-related macular degeneration (AMD) and other neovascular diseases. AMD is a major cause of severe vision loss in the older population. It occurs due to growth of new leaky blood vessels (neovasculature) from the choriocapillaris, which results in destruction of photoreceptors in the fovea and loss of central vision. Damage outside the diseased region is always a concern, due to photosensitizer accumulation and its 1-γ excitation. Highly targeted 2-γ excitation, due to its non-linear intensity dependence, intrinsically avoids out-of-focus damage to healthy tissues and so could be valuable for wet-AMD. We have previously developed a quantitative approach for comparing the 2-γ efficacy of photosensitizers in vitro. In this study, we report further the development of ex vivo and in vivo techniques. A mouse mesenteric vessel has been investigated as the ex vivo model of neovasculature. For the in vivo studies, we have explored a mouse dorsal skin-fold window chamber model. Two-photon PDT is delivered using tightly focused ~300 fs laser pulses from a Ti:sapphire laser operating at 850 nm with 90 MHz pulse repetition rate. Confocal microscopy coupled to the laser was used to visualize the vessel's/cell's response before, during and after the treatment. We are able to demonstrate quantitative biological techniques to evaluate efficacy of 2-γ PDT photosensitizers in vivo.
In this paper we report on the study of S2→S0 blue fluorescence and two-photon absorption (TPA) for a series of Zn-tetrabenzoporphyrins
(Zn-TBP) with sequential substitution of phenyl groups in meso-positions. The blue fluorescence
has been measured with both one- and two-photon excitation. The data on TPA showed that lowest g-parity state lies
above B-state for all these compounds and blue fluorescence has been detected upon two-photon excitagtion at g→g
transition energies above that of Soret band. The data are in line with the suggested role of the g-parity low-lying state in
the nonradiative deactivation of B state. More than two-fold decrease in the relative yield of blue fluorescence was found
in going from Zn-monophenyl-TBP to Zn-tetraphenyl-TBP. The enhancement of the radiationless internal S2→S1 and
S1→S0 conversion and the decrease in the quantum yield of blue fluorescence was proposed to explain by nonplanar distortions of tetrapyrrolic macrocycle in Zn-tetraphenyl-TBP. The obtained results indicate that the positioning of g-parity excited states above B states is a requirement but not the sufficient condition for presence of blue fluorescence.
Complete blood vessel occlusion is required for the treatment of age-related macular degeneration (AMD). AMD is the leading cause of blindness in developed countries and current treatment regimes have potential to cause collateral damage, or do not remove pre-existing unwanted vasculature. It has been proposed that two-photon excitation (TPE) photodynamic therapy (PDT) can be applied to cause local blood vessel occlusion without damaging surrounding retinal tissues. The in ovo chicken chorioallantoic membrane (CAM) is used as the model for vascularization in the wet form of AMD; novel techniques for the utilization of the CAM are reported. Complete occlusion of CAM vessels ~15 µm in diameter is achieved using the clinically approved photosensitizer Verteporfin (Visudyne®, QLT, Incorporated, Vancouver, British Columbia, Canada) and TPE activation. The average and peak irradiances used for treatment are 3.3×106 W/cm2 and 3.7×1011 W/cm2, respectively. A total fluence of 1.1×108 J/cm2 is the dosage required for successful occlusion, and it is expected that for optimal conditions it will be much less. These results are the first proof-of-principle evidence in the literature that indicate TPE-PDT can be used to occlude small blood vessels. Further investigation will help determine the utility of TPE-PDT for treating wet AMD, perhaps through targeting feeder vessels.
Photodynamic therapy (PDT) using verteporfin is widely used for treatment of age related macular degeneration (AMD).
Due to non-perfect selectivity of the drug accumulation in the neovasculature some collateral damage to healthy tissue
arises during the treatment. Damage to healthy structures in the eye is always a concern because of a high probability of
reducing visual acuity. Two-photon (2-&ggr;) photodynamic therapy potentially offers much higher treatment selectivity than
its one-photon (1-&ggr;) counterpart. By utilizing focused light for 2-&ggr; excitation, treatment volumes on the order of
microliters can be achieved thus maximizing localized insult to abnormal blood vessels and sparing healthy tissue. We
propose that 2-&ggr; photodynamic therapy will be valuable in the treatment of choroidal neovascularization secondary to
age related macular degeneration as well as other conditions. To ascertain feasibility of 2-&ggr; photodynamic therapy we
measured 2-&ggr; spectrum and cross sections of verteporfin (80 GM at 940 nm, 1 GM = 10-50 cm4s/photon), chlorin e6 (14
GM at 800 nm) and tetrasulfonated aluminum phthalocyanine (140 GM at 900 nm) and investigated their in vitro
efficiency under 2-&ggr; excitation. Only verteporfin demonstrated cell kill under the used irradiation parameters (average
light intensity 9.1 mW, wavelength 850 nm, total light dose 6900 J/cm2). Dorsal skinfold window chamber model in
mouse was used to test efficiency of 2-&ggr; PDT with verteporfin in vivo. Although we were able to induce photodynamic
damage to a blood vessel using 1-&ggr; excitation, 2-&ggr; excitation resulted in no visible damage to irradiated blood vessel. The most probable reason is low efficiency of verteporfin as a 2-&ggr; photosensitizer. We also report 2-&ggr; spectrum of new
photosensitizer, HCC4 (4300 GM at 830 nm), specifically designed for efficient 2-&ggr; excitation.
Age related macular degeneration (AMD) is a major cause of severe vision loss in the older population, due to ingrowth
of new leaky blood vessels (neovasculature) from the choriocapillaris, which results in destruction of photoreceptors in
the fovea and loss of central vision. "Standard" one-photon (1-γ) photodynamic therapy (PDT) using Visudyne(R) is an
approved method of AMD treatment but has the potential to damage healthy tissues lying above and below the
neovasculature due to photosensitizer accumulation and its wide-beam 1-γ excitation. Highly-targeted two-photon (2-γ)
excitation may avoid this, since, due to its non-linear intensity dependence, the probability of 2-γ excitation is greatest in
the focal plane, which intrinsically avoids out-of-focus damage to healthy tissues.
The aim of the present study is to evaluate the 2-γ efficiency of Visudyne and to compare it to the archetypal
photosensitizer Photofrin(R). Since neovascular endothelium is targeted in AMD, an endothelial cell line (YPEN-1) was
selected as the in vitro model. 2-γ PDT was delivered using tightly focused ~300 fs laser pulses from a Ti:sapphire laser
operating at 850 nm with 90 MHz pulse repetition rate. An assay was developed for quantification of the cellular damage
using the permeability stain Hoechst 33258 and the viability stain SYTOX. Visudyne (LD50= dose to kill 50% of cells:
500 J/cm2, 10 M, 7.2 μg/ml) was about an order of magnitude more effective than Photofrin (LD50 : 7500 J/cm2, ~42 μM, 25 μg/ml). We also demonstrate for the first time the quadratic dependence of the cellular response to 2-γ PDT.
This in vitro work will lead to the design of optimized in vivo studies in animal models of AMD.
Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.
Fullerene derivatives have appealing properties that can potentially be used in materials science and medical applications. In particular, fullerenes are known to produce reactive oxygen species upon their excitation with light. This makes them particularly attractive as photosensitizers for photodynamic therapy (PDT). Photodynamic therapy is a new modality of treatment of cancer as well as some non-cancerous conditions. It involves the combined actions of a drug (photosensitizer) and light to produce a cytotoxic effect. Water-soluble hexa(sulfo-n-butyl)[60]fullerenes (FC4S) was reported recently to generate singlet oxygen (1O2) and superoxide radical (O2-·) upon its excitation with light, making it a promising candidate for PDT treatments. Recently, we synthesized new amphiphilic fullerene derivatives, namely, [60]fullerene-diphenylaminofluorene-oligo(ethylene glycol) conjugates, C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), as potential photosensitizers. In this paper we compare FC4S to PEG-based fullerenes in terms of their singlet oxygen photosensitization ability. We measured time-resolved kinetics of singlet oxygen luminescence photosensitized by excitation of fullerenes via a 10 ns pulsed laser at 523 nm. For FC4S we observed "normal" kinetics with a monoexponential decay profile giving a time constant 3.8 us in water. In contrast, for the case of C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), a non-monoexponential decay profile with a long tail (~ 102 μs) in water was observed. We hypothesize that this is due to formation of vesicles by PEG fullerenes in aqueous solution. To investigate photodynamic activity of these fullerene derivatives in vitro, we used HeLa human adenocarcinoma and B16 mouse melanoma cell lines. FC4S showed clear photodynamic effects in both cell lines. The total fluence required to kill 50% of the cells at the drug concentration of 20 μM was 36 Jcm-2 for HeLa cells and 72 Jcm-2 for B16 cells. Neither PEG-based fullerene derivatives showed any appreciable photodynamic activity, possibly, due to low efficiency of singlet oxygen generation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.