Low-dose denoising is an effective method that utilizes the power of CT for screening while avoiding high radiation exposure. Several research work has reported the feasibility of deep learning based denoising, but none of them have explored the influence of different network designs on the denoising performance. In this work, we explored the impact of three commonly adapted network design concepts in denoising: (1) Network structure, (2) Residual learning, and (3) Training loss. We evaluated the network performance using the dataset containing 76 real patient scans from Mayo Clinic Low-dose CT dataset. Experimental results demonstrated that residual blocks and residual learning are recommended to be utilized in design, while pooling is not recommended. In addition, among the classical training losses, the mean absolute error (L1) loss outperforms the mean squared error (MSE) loss.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.