KEYWORDS: Sensors, Weapons of mass destruction, Homeland security, System identification, Polarization, Platinum, Ions, Electric field sensors, Detector arrays, Defect detection
We present the results from testing over 100 5x5x12 mm3 TlBr detectors configured as 3D position-sensitive virtual Frisch-grid (VFG) detectors with platinum contacts. The primary objective was to comprehensively understand factors limiting performance and long-term response variations in these detectors. The incorporation of 3D position sensitivity allowed us to monitor internal changes in charge collection efficiency after applying voltage, and to correlate them with device performance changes. The biased detectors underwent defect distribution alterations due to electric field-enhanced ion migration. Our results are based on an extensive dataset obtained from TlBr crystals produced by Radiation Monitoring Devices (RMD). These measurements were part of our development of a handheld isotope identifier based on an array of position-sensitive TlBr detectors, supported by the Department of Homeland Security, Countering Weapons of Mass Destruction Office. The majority of the detectors exhibited a common trend of performance improvement within 1-2 weeks, stabilization for some period of time, then a slow degradation; however, some detectors deviated from this pattern.
Thallium bromide (TlBr) is a promising material for room temperature gamma radiation detection due to its high density, high atomic number, and wide bandgap. Additionally, TlBr has a cubic crystal structure and melts congruently at a relatively low temperature. Advances in material purification, crystal growth and device processing have led to improved material quality including a significant increase in the mobility-lifetime product of electrons in TlBr. This has enabled single carrier collection devices with thicknesses of 1 cm and beyond. The arrays have been flip-chip bonded to carrier boards using a low temperature curing conductive polymer. In this paper we report on results from planar and pixelated devices. Planar TlBr devices with dimensions of 12 mm × 12 mm × 7 mm exhibit an energy resolution ranging from 3% to 5% FWHM at 662 keV when using a shaping time of 2 s. The energy resolution in planar devices improves with a reduction of the shaping timing consistent with the expected amelioration of the depth dependence. The 1-cm thick pixelated arrays, with a pitch of 1.72 mm, produce an energy resolution in the anode spectrum ranging from 1.8% to 4.4%, without applying depth corrections. This work presents spectra from a selected pixel for 133Ba and 57Co irradiation. Measurements of the room-temperature stability of the planar and pixelated detectors show that the position of the 662-keV photopeak is stable over a period of ~200 days, but the shape of the photopeak in the anode spectra exhibits small changes. These detectors show promise for applications in radio-isotope identification devices and for medical imaging.
Li-based semiconductor materials represent a promising alternative to 3-He and scintillation materials for thermal neutron detection and imaging instruments. Semiconductor crystals of LiInSe2, LiInP2Se6, and LiGaInSe2 (LiGa0.5In0.5Se2) were grown using natural and enriched lithium (6Li). The materials were characterized for electronic and optical properties including optical transmission, current-voltage (I-V) characteristic for resistivity, and bandgap. Thermal neutron detectors were fabricated and characterized for neutron and gamma-ray response. Pulse height spectra were collected from a moderated custom-designed 241AmBe neutron source and a 60Co gamma-ray source. The LiInSe2 samples exhibited a 2.8 eV cutoff in the optical spectrum and a resistivity of ~8×1011 Ω·cm. LiInSe2 devices exhibit a noise floor of <30 keV which operated at a field of 630 V/mm, for the 0.8-mm thick device. The Vertical Gradient Freeze (VGF) grown LiInP2Se6 samples exhibited a 2.2 eV cutoff in the optical spectrum and resistivity of ~4×1012 Ω·cm. The Chemical Vapor Transport (CVT) grown LiInP2Se6 devices exhibit a noise floor of <60 keV which operated at a field of 8,000 V/mm, for the 0.05- mm thick device. Furthermore, the long-term stability of LiInSe2 devices during multiple weeks under continuous bias was investigated.
TlBr is a promising material for room-temperature semiconductor gamma-ray detectors currently under development by several groups around the world. TlBr has the optimal combination of properties: high atomic number, high density, high mu-tau product, low Fano factor, and lower fabrication cost compared to other materials. The presence of crystal defects and ionic drift-diffusion enchained by the electric field affects the performance of today’s TlBr detectors. As a bias is applied across a detector, a defect distribution inside starts changing due to ion migration. The changes appear to be most pronounced in the first weeks of applying a bias to newly-manufactured crystals during the “conditioning” period. The 3-D position-sensitive detectors provide an opportunity to investigate these processes and their effects on the device performance and on corrections applied to the spectrum. Here, we present results from analyzing response changes in TlBr crystals under applied biases using position-sensitive capacitive Frisch-grid detectors.
This work has been supported by the U.S. Department of Homeland Security, Countering Weapons of Mass Destruction Office, under competitively awarded contract 70RDND18C00000024. This support does not constitute an express or implied endorsement on the part of the Government.
High purity, CVD grown diamond is a good candidate material for beta particle detection at elevated temperature in the
presence of a gamma ray background. Due to its wide band gap, low noise detector operation is possible at temperatures
in excess of 200 °C. Its low atomic number limits its gamma-ray interaction probability. Stacked diamond detectors
operated in coincidence can further reduce background due to gamma-ray interactions. In addition, high charge carrier
mobility and high breakdown voltage enable high count rate operation. In this paper we report on gamma-ray and beta
particle detection of CVD diamond detectors with thickness ranging from ~ 0.1 mm to 0.5 mm. CVD grown diamond
materials were acquired from Element Six. Planar devices were fabricated by depositing Au/Cr contacts by thermal
evaporation. Measurements of single diamond detectors and stacked detectors operated in coincidence as well as
measurements at elevated temperatures are presented in this paper.
The detection of thermal neutrons has traditionally been accomplished with 3He-tubes, but with the recent shortage of 3He, much research has gone into finding suitable replacements. Both relatively inefficient 10B- and 6LiF-coated silicon diodes and HgI2 have been known for many years, and engineered structures in Si that have been filled with 10B and 6LiF have shown promise. These devices are intended to realize an optimal juxtaposition of neutron-sensitive material and semiconductor and thereby simulate a semiconductor containing B or Li. Such material has been realized for the first time in the form of 6LiInSe2 in which collectable charge from the 6Li(n,t) reaction indicates a neutron event. In this paper we report neutron and gamma responses of 6LiInSe2, we show pulse height spectra from pure gamma sources and from a thermal neutron source, and we derive the μτ product from the position of spectral features as a function of bias voltage. In addition, we demonstrate the observation of the beta decay of 116mIn in samples exposed to thermal neutrons. This feature of the response serves as an additional confirmation of exposure to neutrons.
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices’ active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Thermal neutron detectors in planar configuration were fabricated from B2Se3 (Boron Selenide) crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron
counting measurement. In this study, the resistivity of crystals is reported and the collected pulse height spectra are
presented for devices irradiated with the 241AmBe neutron source. Long-term stability of the B2Se3 devices for neutron detection under continuous bias and without being under continuous bias was investigated and the results are reported. The B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).
Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc.
All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron
counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as
137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height
spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with
polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the
detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room
temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material
processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large
working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid
detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results
and preliminary results from Cinnabar (HgS) detectors.
A 4.7×4.7×9.5 mm3 Frisch collar device was fabricated from CdZnTe materials grown by the Traveling Heater
Method (THM). The device was then characterized through probing with a highly collimated 662 keV gammaray
source of 137Cs. In a systematic series of experiments, the detector, at its best design, was probed using a
collimated 137Cs source. The results were confirmed through simulating the charge collection efficiency (CCE)
maps of the device under the operated condition. It is proved that, unlike the planar configuration, the charge
collection efficiency profile along the length of Frisch collar device is considerably improved. It is also shown
that enhancement in spectral performance occurs due to the application of the Frisch collar to a planar device.
This enhancement is due to the fact that the Frisch collar alters the nonuniform CCE profile in a planar device
to a more uniform distribution in a Frisch collar device. Additionally, a technique to optimize this uniform
distribution is investigated for a 5.0 × 4.7 × 19.6 mm3 Frisch collar device, while the experimental results
are confirmed though numerical simulation. Based on this technique, there exists an optimum dielectric layer
thickness for the CdZnTe Frisch collar device, for which the CCE profile has its best (most uniform) distribution
and shows its best spectroscopic performance. The CdZnTe materials for this study were grown by THM at
Redlen Technologies and the CdZnTe devices were fabricated and characterized at the S.M.A.R.T. Laboratory
at Kansas State University.
Surface passivation and final surface treatment on the lateral sides of CdZnTe/CdTe gamma ray detectors have been studied by many research groups. However, systematic studies of spectroscopic performance and the current voltage (I-V) characteristic behavior of devices as a result of surface treatments have not been conducted. Additionally, few studies report results for high energy gamma ray detection, which requires different techniques and technologies. In this study, a variety of final surface treatments and oxidizing agents have been applied on different CdZnTe detectors, and the effects on the I-V characteristic behavior and spectral performance of Frisch collar devices at 662 keV are reported. Further, the possibility of an alternative method is investigated, in which ion milling is utilized to etch the lateral surfaces with energetic ions of Xenon. The process is described in detail and the challenges are presented. Electron Microprobe (EMP) technique was performed on the device sides to determine the surface elements using Energy Dispersive Spectroscopy (EDS) before and after each treatment. The CdZnTe materials for this study were acquired from Redlen Technologies, and the CdZnTe devices were fabricated and characterized for each treatment at the S.M.A.R.T. Laboratory at Kansas State University.
The effects of crystal geometry and aspect ratio on a CdZnTe Frisch collar device were investigated. A
19.08x19.34x4.95mm3 device fabricated from CdZnTe grown by Redlen Technologies was used as the starting material.
The crystal was re-fabricated many times to achieve several aspect ratios while the device length was held constant at
4.75±0.15mm. The following aspect ratios were successfully fabricated from the initial device: 0.26, 0.52, 0.71, 0.96,
1.19, 1.36, 1.59 and 1.92. The energy spectra of 241Am and 137Cs were recorded for all devices in both planar and Frisch
collar configurations. The current-voltage (I-V) characteristic curve was also determined for planar configurations. It was
observed that the Frisch collar effect begins to occur for devices with an aspect ratio of approximately 1.0. Device
performance continued to improve as the aspect ratio was further increased and was noted to significantly improve the
energy resolution of the device when the aspect ratio was greater than 1.5. The CdZnTe devices were also theoretically
modeled to support the experimental conclusion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.