Applications for photonic integrated circuit technologies based on the conditional Faraday Effect with electron spins in
quantum dots are discussed. The interaction of light with the quantum confined electrons leads to a rotation of the light
polarization. Design considerations for polarization multiplexing systems and plasmon resonance sensors based on
polarization rotation are presented. Calculations for light of wavelengths λ=1.3 μm and λ=1.55 μm show devices with
active regions of a few hundred microns are possible using InAs/GaAs quantum dots. The advantages of spin-based
devices are also discussed.
GaAs-based PIN detectors with mesa sizes 1, 2.5, 5, 7.5 and 10 mm were fabricated and characterized for alpha particle
response using a Po-210 alpha source. By decoupling the neutron conversion process of a proximity moderator, we were
able to directly probe the alpha response characteristics of the PIN detectors as a function of device area. Dark current
levels in the PIN detectors ranged from 6.1 to 9.5 pA at zero bias. The dark current values were higher for larger devices
and a linear relationship between mesa size and dark current was observed. The PIN detectors were found to have a
strong alpha response of up to 5 nA/mm2 with a linear relation between the response current and mesa area. The
measured responsivity of the detectors was 0.014 A/W. The average device efficiency was determined to be 31.5%.
Using the measured alpha response properties of the GaAs PIN diodes one is able to select the optimal device area for a
given moderator and application specific neutron flux.
Multi-photon three-dimensional micro-/nano-fabrication (3DM) is a powerful technique for creating complex 3D micro-scale structures of the type needed for micro-electromechanical systems (MEMS), micro-optics, and microfluidics. In 3DM high peak-power laser pulses are tightly focused into a medium which undergoes a physical or chemical change following multi-photon excitation at the focal point. Complex structures are generated by serial 3D-patterned exposure within the material volume. To further the application of 3DM to micro-component engineering, we are developing a fully automated and integrated 3DM system capable of creating complex cross-linked polymer structures based on patterns designed in a CAD environment. The system consists of four major components: (1) a femtosecond laser and opto-mechanical system; (2) 3-axis micro-positioner; (3) a computer-controlled fabrication interface; and (4) software for fabrication-path planning. The path-planning software generates a 3DM command sequence based on an object-design input file created using standard commercial CAD software. The 3DM system can be used for start-to-finish design and fabrication of waveguides, 3D photonic crystals, and other complex micro-structures. These results demonstrate a technological path for implementing 3DM as a tool for micro- and nano-optical component manufacture.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.