In this work, a novel approach was proposed to enhance the visual perception of ischemic stroke in computed tomography scans. Through different image processing techniques, we enabled less experienced physicians, to reliably detect early signs of stroke. A set of 40 retrospective CT scans of patients were used, divided into two groups: 25 cases of acute ischemic stroke and 15 normal cases used as control group. All cases were obtained within 4 hours of symptoms onset. Our approach was based on the variational decomposition model and three different segmentation methods. A test determined observers' performance to correctly diagnose stroke cases. The Expectation Maximization method provided the best results among all observers. The overall sensitivity of the observer’s analysis was 64% and increased to 79%. The overall specificity was 67% and increased to 78%. These results show the importance of a computational tool to assist neuroradiology decisions, especially in critical situations such as the diagnosis of ischemic stroke.
Volumetric breast density has been shown to be one of the strongest risk factor for breast cancer diagnosis. This metric can be estimated using digital mammograms. During mammography acquisition, breast is compressed and part of it loses contact with the paddle, resulting in an uncompressed region in periphery with thickness variation. Therefore, reliable density estimation in the breast periphery region is a problem, which affects the accuracy of volumetric breast density measurement. The aim of this study was to enhance breast periphery to solve the problem of thickness variation. Herein, we present an automatic algorithm to correct breast periphery thickness without changing pixel value from internal breast region. The correction pixel values from periphery was based on mean values over iso-distance lines from the breast skin-line using only adipose tissue information. The algorithm detects automatically the periphery region where thickness should be corrected. A correction factor was applied in breast periphery image to enhance the region. We also compare our contribution with two other algorithms from state-of-the-art, and we show its accuracy by means of different quality measures. Experienced radiologists subjectively evaluated resulting images from the tree methods in relation to original mammogram. The mean pixel value, skewness and kurtosis from histogram of the three methods were used as comparison metric. As a result, the methodology presented herein showed to be a good approach to be performed before calculating volumetric breast density.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.