Optical frequency comb spectroscopy has proven an indispensable tool for high-resolution spectroscopy. QCL frequency combs offer the possibility to explore the mid-infrared spectral range. However, they suffer from large repetition frequencies which make them seemingly unsuitable for high resolution spectroscopy. We present three measurement modes overcoming this limitation. The rapid-sweep technique allows to retrieve the full high-resolution spectrum in 6ms, the step-sweep technique allows for high-resolution spectroscopy with spectral resolution <5e-4 cm-1. As a last technique we present the time-resolved step-sweep approach enabling high-resolution spectra of sub-millisecond-lived samples. It was assessed in a study of cold gases in supersonic beams.
In this paper, we present a thorough comparison of mid-infrared techniques, focusing on the two dominant solutions: QCL and FTIRs. Consequently, we will cover the technical challenges the DCS technique has to overcome to be superior to the FTIR technique. Pushing the DCS technique, we manage to get µs time resolution for up to 131 ms acquisition time as well as < 1 ms time-resolution for reactions which take > 10s. Furthermore, we have improved the spectral coverage of QCL DCS covering more than 100 cm-1 . Overall, the combination of high-speed, spectral bandwidth and high-brightness of this highly coherent source puts DCS at an advantage compared to FTIRs for a plethora of applications, such as liquid analysis (e.g. protein analysis, dioxin measurement, stopped flow), fiber applications and high-resolution spectroscopy. As such, we will give a comprehensive review of applications which are targeted today using QCL DCS. This covers bio-, environmental/gas, combustion as well as water analysis.
Time-resolved vibrational spectroscopy is an important tool for understanding biological processes and chemical reaction pathways [1]. Today, all available methods to our knowledge require many repetitions of an experiment to acquire a microsecond time-res. mid-IR spectrum.
We present the IRspectrometer, a quantum cascade laser dual frequency comb spectrometer [2-3]. It allows for parallel acquisition of hundreds of mid-infrared wavelengths with microsecond time resolution. The formation of the light-activated L, M and N-states in bacteriorhodopsin – which only have µs to ms lifetimes – has been recorded that show the infrared response of bacteriorhodopsin to 10 ns visible light pulses with microsecond time-resolution. The different wavelengths were all measured in parallel thanks to the dual-comb approach. The spectra as well as the kinetics show good agreement with those from step-scan FT-IR measurements. As a benchmark, the spectral signature of several intermediate states of the bacteriorhodopsin photocycle has been recorded in a single shot measurement. This approach greatly reduces the complexity of time-resolved bio-spectroscopy measurements in the mid-infrared which currently require many repetitions.
Using dual optical frequency comb (OFC) spectroscopy in the longwave infrared (LWIR), we demonstrate standoff detection of trace amounts of target compounds on diffusely scattering surfaces. The OFC is based on quantum cascade lasers (QCL) that emit ~1 Watt of optical power under cw operation at room temperature over coherent comb bandwidths approaching 100 cm-1. We overlap two nearly identical 1250 cm-1 QCL OFC sources so that the two interfering optical combs create via heterodyne a single comb in the radio frequency (rf) that represents the entire optical spectrum in a single acquisition. In a laboratory scale demonstration we show detection of two spectrally distinct fluorinated silicone oils, poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox™, that act as LWIR simulants for security relevant compounds whose room temperature vapor pressure is too low to be detected in the gas phase. These target compounds are applied at mass loadings of 0.3 to 90 μg/cm2 to sanded aluminum surfaces. Only the diffusely scattered light is collected by a primary collection optic and focused onto a high speed (0.5 GHz bandwidth) thermoelectrically cooled mercury cadmium telluride (MCT) detector. At standoff distances of both 0.3 and 1 meter, we demonstrate 3 μg/cm2 and 1 μg/cm2 detection limits against poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox™, respectively.
KEYWORDS: Quantum cascade lasers, Spectroscopy, Frequency combs, Mid-IR, Signal to noise ratio, Semiconductors, Sensors, Spectrometers, Signal processing, Semiconductor lasers
We develop a spectroscopy platform for industrial applications based on semiconductor quantum cascade laser (QCL)
frequency combs. The platform’s key features will be an unmatched combination of bandwidth of 100 cm-1, resolution of
100 kHz, speed of ten to hundreds of μs as well as size and robustness, opening doors to beforehand unreachable
markets. The sensor can be built extremely compact and robust since the laser source is an all-electrically pumped
semiconductor optical frequency comb and no mechanical elements are required. However, the parallel acquisition of
dual-comb spectrometers comes at the price of enormous data-rates. For system scalability, robustness and optical
simplicity we use free-running QCL combs. Therefore no complicated optical locking mechanisms are required. To
reach high signal-to-noise ratios, we develop an algorithm, which is based on combination of coherent and non-coherent
averaging. This algorithm is specifically optimized for free-running and small footprint, therefore high-repetition rate,
comb sources. As a consequence, our system generates data-rates of up to 3.2 GB/sec. These data-rates need to be
reduced by several orders of magnitude in real-time in order to be useful for spectral fitting algorithms.
We present the development of a data-treatment solution, which reaches a single-channel throughput of 22% using a
standard laptop-computer. Using a state-of-the art desktop computer, the throughput is increased to 43%. This is
combined with a data-acquisition board to a stand-alone data processing unit, allowing real-time industrial process
observation and continuous averaging to achieve highest signal fidelity.
Devices based on SOI technology are subject to bow due to residual stress induced by the buried oxide. We have
designed and fabricated a compact tunable piston tip-tilt mirror device in which the shape and the arrangement of the
suspension beams result in both a reduced stress in the suspension beams and an optically flat mirror. The piston tip-tilt
mirror is characterized by an accurate vertical displacement of up to 18 &mgr;m @ 80 V with good repeatability, and a tip-tilt
of up to 2 mrad @ 50 V.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.