Plane-by-plane fabrication of fiber Bragg gratings in optical fibers using short-pulse femtosecond IR laser is proposed and demonstrated. By incorporating a cylindrical lens in the fabrication setup, a plane of index modification can be directly inscribed in fiber core by a single laser pulse through the proposed method. This plane-by-plane method simplifies the grating inscription process and allows for the fabrication of complicated grating structures.
The powerful transition from electronic to photonic systems in today's Internet-driven communication industry is driving the development of processes to miniaturize and integrate optical components. New processing and packaging technologies are now required that can precisely shape and assemble transparent optical components to sub-wavelength accuracy. Laser microfabrication technology is beginning to play a role here. Our groups are exploring two extremes in laser technology- ultrafast lasers and very short wavelength F2 lasers- to microstructure optical surfaces and to profile refractive-index structures inside transparent glasses. In this paper, we compare photosensitivity responses, spatial resolution, and processing windows for the deep-ultraviolet and ultrafast laser approaches, and discuss prospects for laser printing and trimming of optical waveguide components and circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.