KEYWORDS: Spectrographs, Telescopes, Lanthanum, Planets, Spectroscopes, Exoplanets, Aerospace engineering, Space operations, James Webb Space Telescope
NIRPS is a near-infrared (YJH bands), fiber-fed, high-resolution precision radial velocity (pRV) spectrograph currently under construction for deployment at the ESO 3.6-m telescope in La Silla, Chile. Through the use of a dichroic, NIRPS will be operated simultaneously with the optical HARPS pRV spectrograph and will be used to conduct ambitious planet-search and characterization surveys through a 720-night of guaranteed time allocation. NIRPS aims at detecting and characterizing Earth-like planets in the habitable zone of low-mass dwarfs and obtain high-accuracy transit spectroscopy of exoplanets. Here we present a summary of the full performances obtained in laboratory tests conducted at Université Laval (Canada), and the first results of the on-going on-sky commissioning of the front-end. Science operations of NIRPS is expected to start in late-2020, enabling significant synergies with major space and ground instruments such as the JWST, TESS, ALMA, PLATO and the ELT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.