Proceedings Article | 27 April 2007
Proc. SPIE. 6525, Active and Passive Smart Structures and Integrated Systems 2007
KEYWORDS: Aerospace engineering, Satellites, Capillaries, Control systems, Arteries, Head, Solids, Convection, Space operations, System integration
The Department of Defense is actively pursuing a Responsive Space capability that will dramatically reduce the cost and
time associated with getting a payload into space. In order to enable that capability, our space systems must be modular
and flexible to cover a wide range of missions, configurations, duty cycles, and orbits. This places requirements on the
entire satellite infrastructure: payloads, avionics, electrical harnessing, structure, thermal management system, etc. The
Integrated Structural Systems Team at the Air Force Research Laboratory, Space Vehicles Directorate, has been tasked
with developing structural and thermal solutions that will enable a Responsive Space capability. This paper details a
"symbiotic" solution where thermal management functionality is embedded within the structure of the satellite. This
approach is based on the flight proven and structurally efficient isogrid architecture. In our rendition, the ribs serve as
fluidic passages for thermal management, and passively activated valves are used to control flow to the individual
components. As the paper will explain, our analysis has shown this design to be structurally efficient and thermally
responsive to a wide range of potential satellite missions, payloads, configurations, and orbits.